C++部署pytorch模型(二)————使用libtorch调用torchscripts模型

上一篇文章讲了如果把pytorch模型转化成torchscripts模型,这篇介绍如何在libtorch中调用

先贴代码,细节等后面再补充

#include  // One-stop header.
#include 
#include 
#include 
#include 
#include 
#include 
#include 


int main()
{
    // 加载模型
    std::shared_ptr module = torch::jit::load("D:\\scripts\\simple_facenet\\log\\torch_script_eval.pt");
    assert(module != nullptr);
    // 转化为GPU模型
    module->to(at::kCUDA);
    std::cout << "ok\n" << std::endl;

    
    std::vector inputs_1,inputs_2;
    
    // 加载图片,这里加载了两张一样的图片
    cv::Mat image_1,image_2;
    image_1 = cv::imread("D:\\datasets\\lfw_yolo_182\\Aaron_Eckhart\\Aaron_Eckhart_0001.jpg");
    image_2 = cv::imread("D:\\datasets\\lfw_yolo_182\\Aaron_Eckhart\\Aaron_Eckhart_0001.jpg");
    
    // 数据转换
    // OPENCV 默认格式为BGR,而我训练模型用的是RGB格式,所以需要转换
    cv::cvtColor(image_1, image_1, CV_BGR2RGB);
    cv::cvtColor(image_2, image_2, CV_BGR2RGB);
    cv::Mat img_float_1,img_float_2;
    image_1.convertTo(img_float_1, CV_32F, 1.0 / 255);
    image_2.convertTo(img_float_2, CV_32F, 1.0 / 255);
    cv::resize(img_float_1, img_float_1, cv::Size(182, 182));
    cv::resize(img_float_2, img_float_2, cv::Size(182, 182));
    auto img_tensor_1 = torch::CPU(torch::kFloat32).tensorFromBlob(img_float_1.data, { 1,182,182,3 });
    auto img_tensor_2 = torch::CPU(torch::kFloat32).tensorFromBlob(img_float_2.data, { 1,182,182,3 });
    img_tensor_1 = img_tensor_1.permute({ 0,3,1,2 }); // ת��nchw
    img_tensor_2 = img_tensor_2.permute({ 0,3,1,2 }); // ת��nchw
    auto img_var_1 = torch::autograd::make_variable(img_tensor_1, false);
    auto img_var_2 = torch::autograd::make_variable(img_tensor_2, false);
    inputs_1.push_back(img_var_1.to(at::kCUDA));
    inputs_2.push_back(img_var_2.to(at::kCUDA));
    std::cout << "image ready" << std::endl;


    // forward
    auto output_1 = module->forward(inputs_1).toTensor();
    auto output_2 = module->forward(inputs_2).toTensor();
    
    vector feature1(128),feature2(128);

    for (int i = 0;i<128;i++)
    {
        // 转化成Float
        feature1[i] = output_1[0][i].item().toFloat();
        feature2[i] = output_2[0][i].item().toFloat();
    }

    /* 计算vector之间的距离
    ... ...
    */

    getchar();
    return 0;
}


这里为了方便部署,把最后的结果转化为vector了,对libtorch的API还没有摸得很清楚,不知道是否还有跟高效率的转化方式。

有问题的话,可以私信或者加好友交流。

参考:
https://github.com/Jack-An/TorchDemo/blob/master/main.cpp
https://oldpan.me/archives/pytorch-c-libtorch-inference

你可能感兴趣的:(C++部署pytorch模型(二)————使用libtorch调用torchscripts模型)