R语言:EM算法和高斯混合模型的实现

原文 :http://tecdat.cn/?p=3433

 

本文我们讨论期望最大化理论,应用和评估基于期望最大化的聚类。

软件包

install.packages("mclust");

require(mclust)

## Loading required package: mclust

## Package 'mclust' version 5.1

## Type 'citation("mclust")' for citing this R package in publications.

 

数据

我们将使用mclust软件包附带的“糖尿病”数据。

data(diabetes)

summary(diabetes)

## class glucose insulin sspg## Chemical:36 Min. : 70 Min. : 45.0 Min. : 10.0## Normal :76 1st Qu.: 90 1st Qu.: 352.0 1st Qu.:118.0## Overt :33 Median : 97 Median : 403.0 Median :156.0## Mean :122 Mean : 540.8 Mean :186.1## 3rd Qu.:112 3rd Qu.: 558.0 3rd Qu.:221.0## Max. :353 Max. :1568.0 Max. :748.0

 

期望最大化(EM)

期望最大化(EM)算法是用于找到最大似然的或在统计模型参数,其中该模型依赖于未观察到的潜变量最大后验(MAP)估计的迭代方法。期望最大化(EM)可能是无监督学习最常用的算法。

似然函数

似然函数找到给定数据的最佳模型。

R语言:EM算法和高斯混合模型的实现_第1张图片

期望最大化(EM)算法

假设我们翻转硬币并得到以下内容 - 0,1,1,0,0,1,1,0,0,1。我们可以选择伯努利分布

或者,如果我们有以厘米为单位的人的身高(男性和女性)的数据。高度遵循正常的分布,但男性(平均)比女性高,因此这表明两个高斯分布的混合模型。

R语言:EM算法和高斯混合模型的实现_第2张图片

贝叶斯信息准则(BIC)

以糖尿病数据为例

EM集群与糖尿病数据使用mclust。

log.likelihood:这是BIC值的对数似然值

n:这是X点的数量

df:这是自由度

BIC:这是贝叶斯信息标准; 低是好的

ICL:综合完整X可能性 - BIC的分类版本。

clPairs(X,class.d)

 

R语言:EM算法和高斯混合模型的实现_第3张图片

EM的绘图命令会生成以下四个绘图:

BIC值用于选择簇的数量

聚类图

分类不确定性的图表

簇的轨道图

R语言:EM算法和高斯混合模型的实现_第4张图片

R语言:EM算法和高斯混合模型的实现_第5张图片

R语言:EM算法和高斯混合模型的实现_第6张图片

 

你可能感兴趣的:(大数据部落,数据分析,小波滤波器,算法,数据挖掘代写,Computer,science代写,数据分析报告代写,CS作业代写,C代写,C++代写,数据科学Computer,Science报告代写,R语言代写,python代写,数据库代写,代写Comp)