python语义分割任务数据增强,对图片和label做同样的增强变换

# -*- coding:utf-8 -*-
"""数据增强
   1. 翻转变换 flip
   2. 随机修剪 random crop
   3. 色彩抖动 color jittering
   4. 平移变换 shift
   5. 尺度变换 scale
   6. 对比度变换 contrast
   7. 噪声扰动 noise
   8. 旋转变换/反射变换 Rotation/reflection
"""

from PIL import Image, ImageEnhance, ImageOps, ImageFile
import numpy as np
import random
import threading, os, time
import logging

logger = logging.getLogger(__name__)
ImageFile.LOAD_TRUNCATED_IMAGES = True


class DataAugmentation:
    """
    包含数据增强的八种方式
    """


    def __init__(self):
        pass

    @staticmethod
    def openImage(image):
        return Image.open(image, mode="r")

    @staticmethod
    def randomRotation(image, label, mode=Image.BICUBIC):
        """
         对图像进行随机任意角度(0~360度)旋转
        :param mode 邻近插值,双线性插值,双三次B样条插值(default)
        :param image PIL的图像image
        :return: 旋转转之后的图像
        """
        random_angle = np.random.randint(1, 360)
        return image.rotate(random_angle, mode) , label.rotate(random_angle, Image.NEAREST)

    #暂时未使用这个函数
    @staticmethod
    def randomCrop(image, label):
        """
        对图像随意剪切,考虑到图像大小范围(68,68),使用一个一个大于(36*36)的窗口进行截图
        :param image: PIL的图像image
        :return: 剪切之后的图像

        """
        image_width = image.size[0]
        image_height = image.size[1]
        crop_win_size = np.random.randint(40, 68)
        random_region = (
            (image_width - crop_win_size) >> 1, (image_height - crop_win_size) >> 1, (image_width + crop_win_size) >> 1,
            (image_height + crop_win_size) >> 1)
        return image.crop(random_region), label

    @staticmethod
    def randomColor(image, label):
        """
        对图像进行颜色抖动
        :param image: PIL的图像image
        :return: 有颜色色差的图像image
        """
        random_factor = np.random.randint(0, 31) / 10.  # 随机因子
        color_image = ImageEnhance.Color(image).enhance(random_factor)  # 调整图像的饱和度
        random_factor = np.random.randint(10, 21) / 10.  # 随机因子
        brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor)  # 调整图像的亮度
        random_factor = np.random.randint(10, 21) / 10.  # 随机因1子
        contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor)  # 调整图像对比度
        random_factor = np.random.randint(0, 31) / 10.  # 随机因子
        return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) ,label # 调整图像锐度

    @staticmethod
    def randomGaussian(image, label, mean=0.2, sigma=0.3):
        """
         对图像进行高斯噪声处理
        :param image:
        :return:
        """

        def gaussianNoisy(im, mean=0.2, sigma=0.3):
            """
            对图像做高斯噪音处理
            :param im: 单通道图像
            :param mean: 偏移量
            :param sigma: 标准差
            :return:
            """
            for _i in range(len(im)):
                im[_i] += random.gauss(mean, sigma)
            return im

        # 将图像转化成数组
        img = np.asarray(image)
        img.flags.writeable = True  # 将数组改为读写模式
        width, height = img.shape[:2]
        img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
        img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
        img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
        img[:, :, 0] = img_r.reshape([width, height])
        img[:, :, 1] = img_g.reshape([width, height])
        img[:, :, 2] = img_b.reshape([width, height])
        return Image.fromarray(np.uint8(img)), label

    @staticmethod
    def saveImage(image, path):
        image.save(path)


def makeDir(path):
    try:
        if not os.path.exists(path):
            if not os.path.isfile(path):
                # os.mkdir(path)
                os.makedirs(path)
            return 0
        else:
            return 1
    except Exception, e:
        print str(e)
        return -2


def imageOps(func_name, image, label, img_des_path, label_des_path , img_file_name, label_file_name, times=5):
    funcMap = {"randomRotation": DataAugmentation.randomRotation,
               "randomCrop": DataAugmentation.randomCrop,
               "randomColor": DataAugmentation.randomColor,
               "randomGaussian": DataAugmentation.randomGaussian
               }
    if funcMap.get(func_name) is None:
        logger.error("%s is not exist", func_name)
        return -1

    for _i in range(0, times, 1):
        new_image , new_label = funcMap[func_name](image,label)
        DataAugmentation.saveImage(new_image, os.path.join(img_des_path, func_name + str(_i) + img_file_name))
        DataAugmentation.saveImage(new_label, os.path.join(label_des_path, func_name + str(_i) + label_file_name))


opsList = {"randomRotation",  "randomColor", "randomGaussian"}


def threadOPS(img_path, new_img_path, label_path, new_label_path):
    """
    多线程处理事务
    :param src_path: 资源文件
    :param des_path: 目的地文件
    :return:
    """
    #img path 
    if os.path.isdir(img_path):
        img_names = os.listdir(img_path)
    else:
        img_names = [img_path]

    #label path 
    if os.path.isdir(label_path):
        label_names = os.listdir(label_path)
    else:
        label_names = [label_path]

    img_num = 0
    label_num = 0

    #img num
    for img_name in img_names:
        tmp_img_name = os.path.join(img_path, img_name)
        if os.path.isdir(tmp_img_name):
            print('contain file folder')
            exit()
        else:
            img_num = img_num + 1;
    #label num
    for label_name in label_names:
        tmp_label_name = os.path.join(label_path, label_name)
        if os.path.isdir(tmp_label_name):
            print('contain file folder')
            exit()
        else:
            label_num = label_num + 1

    if img_num != label_num:
        print('the num of img and label is not equl')
        exit()
    else: 
        num = img_num


    for i in range(num):
        img_name = img_names[i]
        print img_name
        label_name = label_names[i]
        print label_name

        tmp_img_name = os.path.join(img_path, img_name)
        tmp_label_name = os.path.join(label_path, label_name)

        # 读取文件并进行操作
        image = DataAugmentation.openImage(tmp_img_name)
        label = DataAugmentation.openImage(tmp_label_name)

        threadImage = [0] * 5
        _index = 0
        for ops_name in opsList:
            threadImage[_index] = threading.Thread(target=imageOps,
                                                    args=(ops_name, image, label, new_img_path, new_label_path, img_name, label_name))
            threadImage[_index].start()
            _index += 1
            time.sleep(0.2)


if __name__ == '__main__':
    threadOPS("/data1/qixinyuan/data/datasets/little/img",
              "/data1/qixinyuan/data/datasets/little/new_img",
              "/data1/qixinyuan/data/datasets/little/label",
              "/data1/qixinyuan/data/datasets/little/new_label")

你可能感兴趣的:(python,utills)