mapOutputTracker用于跟踪map阶段任务的输出状态,此状态便于reduce阶段任务获取地址以及中间输出结果。每个map任务或者 reduce任务都会有唯一的标识。分别为mapId和reduceId.每个reduce任务的输入可能是多个map任务的输出,reduce会到各个map任务的所有节点上拉去Block,这一过程交shuffle,每批shuffle过程都有唯一的表示shuffleId。
val mapOutputTracker = if (isDriver) {
new MapOutputTrackerMaster(conf, broadcastManager, isLocal)
} else {
new MapOutputTrackerWorker(conf)
}
private[spark] sealed trait MapOutputTrackerMessage
private[spark] case class GetMapOutputStatuses(shuffleId: Int)
extends MapOutputTrackerMessage
private[spark] case object StopMapOutputTracker extends MapOutputTrackerMessage
private[spark] case class GetMapOutputMessage(shuffleId: Int, context: RpcCallContext)
private[spark] class MapOutputTrackerMasterEndpoint(
override val rpcEnv: RpcEnv, tracker: MapOutputTrackerMaster, conf: SparkConf)
extends RpcEndpoint with Logging {}
private[spark] abstract class MapOutputTracker(conf: SparkConf) extends Logging {}
private[spark] class MapOutputTrackerMaster(conf: SparkConf,broadcastManager:BroadcastManager, isLocal: Boolean) extends MapOutputTracker(conf) {}
private[spark] class MapOutputTrackerWorker(conf: SparkConf) extends MapOutputTracker(conf) {}
private[spark] object MapOutputTracker extends Logging {}
可以看到 MapOutputTrackerMaster和MapOutputTrackerWorker都继承了MapOutputTracker。
一、MapOutputTracker是一个abstract抽象类。获取的Map out的信息根据master和worker有不同的用途:master上,用来记录ShuffleMapTasks所需的map out的源;worker上,仅仅作为cache用来执行shuffle计算。
网友总结:
* MapOutputTracker是 SparkEnv初始化是初始化的重要组件之一 是master-slave的结构
* 用来跟踪记录shuffleMapTask的输出位置 (shuffleMapTask要写到哪里去),
* shuffleReader读取shuffle文件之前就是去请求MapOutputTrackerMaster 要自己处理的数据 在哪里?
* MapOutputTracker给它返回一批 MapOutputTrackerWorker的列表(地址,port等信息)
* shuffleReader开始读取文件 进行后期处理
1、askTracker():检查MapOutputTracker的连接是否正常。
2、sendTracker():检查MapOutPutTracker是否正常工作(发送任意信息返回true)。
3、getServerStatuses():根据参数shuffle id来获取shuffle对应的map out所在的位置及信息。如果没有直接的对应shuffle id的信息,则需要从所有的map中匹配对应shuffle id的map out。
4、getEpoch()和updateEpoch():获取和更新epoch的值。epoch的值是与master同步的,保证map outs是最新的有用的。
二、MapOutPutTrackerMaster针对master的MapOutPutTracker,按照前文的意思,它的作用是为每个shuffle准备其所需要的所有map out,可以加速map outs传送给shuffle的速度。在存储map out的HashMap中,HashMap是基于时间戳的,因此map outs被减少只能因为它被注销掉或者生命周期耗尽。
1、registerShuffle():在map out的集合mapStatuses中注册新的Shuffle,参数为Shuffle id和map的个数。
2、registerMapOutPut():根据Shuffle id在mapStatuses中为Shuffle添加map out的状态(存储的map out其实就是map out的状态)。
3、registerMapOutPuts():同时添加多个map out。
4、unregisterMapOutPut():在mapStatuses中注销给定Shuffle的map out。
5、重写unrigesterShuffle():移除mapStatuses中的给定Shuffle的map out。
6、containShuffle():判断是否存在给定的Shuffle。
7、incrementEpoch():同步epoch加一。
8、getSerializedMapOutputStatuses():给定Shuffle id,返回其map out集合。首先是对epoch进行锁状态下的同步,保证获取资源的正确性;其次,根据Shuffle id获取指定位置的statuses,如果指定位置没有对应Shuffle id的statuses,那么获取这个位置的statuses快照返回,作为参考;最后,如果操作的epoch与锁状态下的epoch是一致的,将获取到的statuses存入缓存。
9、stop():停止MapOutPutTracker,清除mapStatuses,清空缓存。
10、cleanup():在指定时间清除mapStatuses和cachedSerializedStatuses。
三、MapOutPutTracker对象。它通过serializedMapStatuses将map out流通过gzip的压缩方式压缩(压缩是可行的,因为很多map out基于同样的hostname),这样方便数据流传递给reduce进行操作。
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark
import java.io._
import java.util.concurrent.{ConcurrentHashMap, LinkedBlockingQueue, ThreadPoolExecutor}
import java.util.zip.{GZIPInputStream, GZIPOutputStream}
import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet, Map}
import scala.reflect.ClassTag
import scala.util.control.NonFatal
import org.apache.spark.broadcast.{Broadcast, BroadcastManager}
import org.apache.spark.internal.Logging
import org.apache.spark.rpc.{RpcCallContext, RpcEndpoint, RpcEndpointRef, RpcEnv}
import org.apache.spark.scheduler.MapStatus
import org.apache.spark.shuffle.MetadataFetchFailedException
import org.apache.spark.storage.{BlockId, BlockManagerId, ShuffleBlockId}
import org.apache.spark.util._
private[spark] sealed trait MapOutputTrackerMessage
private[spark] case class GetMapOutputStatuses(shuffleId: Int)
extends MapOutputTrackerMessage
private[spark] case object StopMapOutputTracker extends MapOutputTrackerMessage
private[spark] case class GetMapOutputMessage(shuffleId: Int, context: RpcCallContext)
/** RpcEndpoint class for MapOutputTrackerMaster
*
* */
private[spark] class MapOutputTrackerMasterEndpoint(
override val rpcEnv: RpcEnv, tracker: MapOutputTrackerMaster, conf: SparkConf)
extends RpcEndpoint with Logging {
logDebug("init") // force eager creation of logger
/** 处理RpcEndpointRef.ask方法,如果不匹配消息,将抛出SparkException
*
* 这一段代码没看懂?
* */
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case GetMapOutputStatuses(shuffleId: Int) =>
val hostPort = context.senderAddress.hostPort
logInfo("Asked to send map output locations for shuffle " + shuffleId + " to " + hostPort)
val mapOutputStatuses = tracker.post(new GetMapOutputMessage(shuffleId, context))
case StopMapOutputTracker =>
logInfo("MapOutputTrackerMasterEndpoint stopped!")
context.reply(true)
stop()
}
}
/**
* Class that keeps track of the location of the map output of
* a stage. This is abstract because different versions of MapOutputTracker
* (driver and executor) use different HashMap to store its metadata.
*
* 类跟踪一个阶段map输出的位置。这是抽象的,因为不同版本的MapOutputTracker(驱动程序和执行器)
* 使用不同的HashMap来存储它的元数据。
*
* MapOutputTracker是一个abstract抽象类。获取的Map out的信息根据master和worker有不同的用途:
* master上,用来记录ShuffleMapTasks所需的map out的源;
* worker上,仅仅作为cache用来执行shuffle计算。
*
* 它通过serializedMapStatuses将map out流通过gzip的压缩方式压缩(压缩是可行的,因为很多map out基于同样的hostname),
* 这样方便数据流传递给reduce进行操作。
*
*
* MapOutputTracker是 SparkEnv初始化是初始化的重要组件之一 是master-slave的结构
* 用来跟踪记录shuffleMapTask的输出位置 (shuffleMapTask要写到哪里去),
* shuffleReader读取shuffle文件之前就是去请求MapOutputTrackerMaster 要自己处理的数据 在哪里?
* MapOutputTracker给它返回一批 MapOutputTrackerWorker的列表(地址,port等信息)
* shuffleReader开始读取文件 进行后期处理
*
*/
private[spark] abstract class MapOutputTracker(conf: SparkConf) extends Logging {
/** Set to the MapOutputTrackerMasterEndpoint living on the driver.
* 在driver上设置MapOutputTrackerMasterEndpoint为living活动的。
* */
var trackerEndpoint: RpcEndpointRef = _
/**
* This HashMap has different behavior for the driver and the executors.
* 这个HashMap对驱动程序和执行器有不同的行为。
*
* On the driver, it serves as the source of map outputs recorded from ShuffleMapTasks.
* On the executors, it simply serves as a cache, in which a miss triggers a fetch from the
* driver's corresponding HashMap.
*
* 在驱动程序中,它充当从ShuffleMapTasks记录的映射输出的源。
* 在执行器上,它只是充当一个缓存,在这个缓存中,一个失误触发了驱动程序相应的HashMap的获取。
*
* Note: because mapStatuses is accessed concurrently, subclasses should make sure it's a
* thread-safe map.
* 注意:由于mapStatuses同时被访问,子类应该确保它是一个线程安全的映射。
*/
protected val mapStatuses: Map[Int, Array[MapStatus]]
/**
* Incremented every time a fetch fails so that client nodes know to clear
* their cache of map output locations if this happens.
* 每次当一个fetch失败时递增,这样客户节点知道如果发生这种情况,就可以清除它们的映射输出位置缓存。
*/
protected var epoch: Long = 0
protected val epochLock = new AnyRef
/** Remembers which map output locations are currently being fetched on an executor.
* 记住,哪个映射输出位置当前正在被执行器获取。
* */
private val fetching = new HashSet[Int]
/**
* Send a message to the trackerEndpoint and get its result within a default timeout, or
* throw a SparkException if this fails.
*
* 向trackerEndpoint发送一条消息,并在默认超时中获取它的结果,如果失败,则抛出一个SparkException。
*
* askTracker():检查MapOutputTracker的连接是否正常。
*/
protected def askTracker[T: ClassTag](message: Any): T = {
try {
trackerEndpoint.askSync[T](message)
} catch {
case e: Exception =>
logError("Error communicating with MapOutputTracker", e)
throw new SparkException("Error communicating with MapOutputTracker", e)
}
}
/** Send a one-way message to the trackerEndpoint, to which we expect it to reply with true.
* 发送一条到trackerEndpoint的单向消息,我们期望它以true回复。
*
* 检查MapOutPutTracker是否正常工作(发送任意信息返回true)。
* */
protected def sendTracker(message: Any) {
val response = askTracker[Boolean](message)
if (response != true) {
throw new SparkException(
"Error reply received from MapOutputTracker. Expecting true, got " + response.toString)
}
}
/**
* Called from executors to get the server URIs and output sizes for each shuffle block that
* needs to be read from a given reduce task.
* 从executors调用服务器uri,并从给定的reduce任务中读取每个需要读取的shuffle块的输出大小。
*
* @return A sequence of 2-item tuples, where the first item in the tuple is a BlockManagerId,
* and the second item is a sequence of (shuffle block id, shuffle block size) tuples
* describing the shuffle blocks that are stored at that block manager.
*/
def getMapSizesByExecutorId(shuffleId: Int, reduceId: Int)
: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = {
getMapSizesByExecutorId(shuffleId, reduceId, reduceId + 1)
}
/**
* Called from executors to get the server URIs and output sizes for each shuffle block that
* needs to be read from a given range of map output partitions (startPartition is included but
* endPartition is excluded from the range).
* 从executors调用,获取服务器uri和每个shuffle块的输出大小,需要从给定范围的映射输出分区读取
* (包括startPartition,但是endPartition被排除在范围之外)。
*
* @return A sequence of 2-item tuples, where the first item in the tuple is a BlockManagerId,
* and the second item is a sequence of (shuffle block id, shuffle block size) tuples
* describing the shuffle blocks that are stored at that block manager.
*/
def getMapSizesByExecutorId(shuffleId: Int, startPartition: Int, endPartition: Int)
: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = {
logDebug(s"Fetching outputs for shuffle $shuffleId, partitions $startPartition-$endPartition")
val statuses = getStatuses(shuffleId)
// Synchronize on the returned array because, on the driver, it gets mutated in place
statuses.synchronized {
return MapOutputTracker.convertMapStatuses(shuffleId, startPartition, endPartition, statuses)
}
}
/**
* Return statistics about all of the outputs for a given shuffle.
* 对给定的shuffle的所有输出返回统计信息。
*/
def getStatistics(dep: ShuffleDependency[_, _, _]): MapOutputStatistics = {
val statuses = getStatuses(dep.shuffleId)
// Synchronize on the returned array because, on the driver, it gets mutated in place
statuses.synchronized {
val totalSizes = new Array[Long](dep.partitioner.numPartitions)
for (s <- statuses) {
for (i <- 0 until totalSizes.length) {
totalSizes(i) += s.getSizeForBlock(i)
}
}
new MapOutputStatistics(dep.shuffleId, totalSizes)
}
}
/**
* Get or fetch the array of MapStatuses for a given shuffle ID. NOTE: clients MUST synchronize
* on this array when reading it, because on the driver, we may be changing it in place.
*
* (It would be nice to remove this restriction in the future.)
*
* 根据参数shuffle id来获取shuffle对应的map out所在的位置及信息。如果没有直接的对应shuffle id的信息,
* 则需要从所有的map中匹配对应shuffle id的map out。
*
* 获取map任务状态:
* Spark通过调用MapOutputTracker的getStatuses(1.5版本是getServerStatuses)来获取map任务执行的状态信息,
* 其中处理步骤如下:
* 1.从当前BlockManager的MapOutputTracker中获取MapStatus,若没有就进入第2步。否则进入第4步。
* 2.如果获取列表(fetching)中已经存在要取的shuffleId,那么久等待其他线程获取,如果获取列表中不存在要获取的shuffleId,
* 那么就将shuffleId放入获取列表。
* 3.调用askTracker方法向MapOutputTrackerMasterActor发送GetMapOutputStatuses消息获取map任务的状态信息。
* MapOutputTrackerMasterActor接收到GetMapOutputStatuses消息后,将请求的map任务状态信息序列化后发送给请求方,
* 请求方接收到map任务状态信息后进行反序列化操作,然后放入本地的mapStatuses中。
* 4.调用MapOutputTracker的convertMapStatuses方法将或得到的MapStatus转换为map任务所在的地址(即BlockManagerId)
* 和map任务输出中分配给当前reduce任务的Block大小。
*/
private def getStatuses(shuffleId: Int): Array[MapStatus] = {
val statuses = mapStatuses.get(shuffleId).orNull
if (statuses == null) {
logInfo("Don't have map outputs for shuffle " + shuffleId + ", fetching them")
val startTime = System.currentTimeMillis
var fetchedStatuses: Array[MapStatus] = null
fetching.synchronized {
// Someone else is fetching it; wait for them to be done
while (fetching.contains(shuffleId)) {
try {
fetching.wait()
} catch {
case e: InterruptedException =>
}
}
// Either while we waited the fetch happened successfully, or
// someone fetched it in between the get and the fetching.synchronized.
fetchedStatuses = mapStatuses.get(shuffleId).orNull
if (fetchedStatuses == null) {
// We have to do the fetch, get others to wait for us.
fetching += shuffleId
}
}
if (fetchedStatuses == null) {
// We won the race to fetch the statuses; do so
logInfo("Doing the fetch; tracker endpoint = " + trackerEndpoint)
// This try-finally prevents hangs due to timeouts:
try {
val fetchedBytes = askTracker[Array[Byte]](GetMapOutputStatuses(shuffleId))
fetchedStatuses = MapOutputTracker.deserializeMapStatuses(fetchedBytes)
logInfo("Got the output locations")
mapStatuses.put(shuffleId, fetchedStatuses)
} finally {
fetching.synchronized {
fetching -= shuffleId
fetching.notifyAll()
}
}
}
logDebug(s"Fetching map output statuses for shuffle $shuffleId took " +
s"${System.currentTimeMillis - startTime} ms")
if (fetchedStatuses != null) {
return fetchedStatuses
} else {
logError("Missing all output locations for shuffle " + shuffleId)
throw new MetadataFetchFailedException(
shuffleId, -1, "Missing all output locations for shuffle " + shuffleId)
}
} else {
return statuses
}
}
/** Called to get current epoch number.
* 获取当前的epoch数值
* epoch number是什么有什么用?
* epoch的值是与master同步的,保证map outs是最新的有用的。
* */
def getEpoch: Long = {
epochLock.synchronized {
return epoch
}
}
/**
* Called from executors to update the epoch number, potentially clearing old outputs
* because of a fetch failure. Each executor task calls this with the latest epoch
* number on the driver at the time it was created.
*
* 由执行器调用来更新epoch号,可能会清除旧的输出,因为它会导致fetch失败。每个执行器任务都在创建时使用最新的epoch号来调用此任务。
*/
def updateEpoch(newEpoch: Long) {
epochLock.synchronized {
if (newEpoch > epoch) {
logInfo("Updating epoch to " + newEpoch + " and clearing cache")
epoch = newEpoch
mapStatuses.clear()
}
}
}
/** Unregister shuffle data.
* 注销洗牌数据。
* */
def unregisterShuffle(shuffleId: Int) {
mapStatuses.remove(shuffleId)
}
/** Stop the tracker.
* 停止tracker
* */
def stop() { }
}
/**
* MapOutputTracker for the driver.
* driver的MapOutputTracker内部使用mapStatuses:TimeStampedHashMap[int,Array[MapStatus]]来维护跟踪各个map任务的输出状态,
* 其中key对应shuffleld,Array存储各个map任务对应的状态信息MapStatus.
*
* MapOutPutTrackerMaster针对master的MapOutPutTracker,按照前文的意思,它的作用是为每个shuffle
* 准备其所需要的所有map out,可以加速map outs传送给shuffle的速度。在存储map out的HashMap中,HashMap
* 是基于时间戳的,因此map outs被减少只能因为它被注销掉或者生命周期耗尽。
*/
private[spark] class MapOutputTrackerMaster(conf: SparkConf,
broadcastManager: BroadcastManager, isLocal: Boolean)
extends MapOutputTracker(conf) {
/** Cache a serialized version of the output statuses for each shuffle to send them out faster
* 将输出状态的序列化版本缓存到每个洗牌中,以更快地将它们发送出去
* */
private var cacheEpoch = epoch
// The size at which we use Broadcast to send the map output statuses to the executors
// 我们使用广播将输出状态的map发送给执行器的大小
private val minSizeForBroadcast =
conf.getSizeAsBytes("spark.shuffle.mapOutput.minSizeForBroadcast", "512k").toInt
/** Whether to compute locality preferences for reduce tasks
* 是否计算局部首选项以减少任务
* */
private val shuffleLocalityEnabled = conf.getBoolean("spark.shuffle.reduceLocality.enabled", true)
// Number of map and reduce tasks above which we do not assign preferred locations based on map
// output sizes. We limit the size of jobs for which assign preferred locations as computing the
// top locations by size becomes expensive.
/**
* map数量和reduce任务的数量,我们不根据map的输出大小分配优先位置。我们限制了作业的大小,
* 他根据指定的优先位置作为计算顶级位置变得昂贵起来。
*/
private val SHUFFLE_PREF_MAP_THRESHOLD = 1000
// NOTE: This should be less than 2000 as we use HighlyCompressedMapStatus beyond that
// 注意:这个应该小于2000作为我们使用HighlyCompressedMapStatus除此之外
private val SHUFFLE_PREF_REDUCE_THRESHOLD = 1000
// Fraction of total map output that must be at a location for it to considered as a preferred
// location for a reduce task. Making this larger will focus on fewer locations where most data
// can be read locally, but may lead to more delay in scheduling if those locations are busy.
private val REDUCER_PREF_LOCS_FRACTION = 0.2
// HashMaps for storing mapStatuses and cached serialized statuses in the driver.
// Statuses are dropped only by explicit de-registering.
protected val mapStatuses = new ConcurrentHashMap[Int, Array[MapStatus]]().asScala
private val cachedSerializedStatuses = new ConcurrentHashMap[Int, Array[Byte]]().asScala
private val maxRpcMessageSize = RpcUtils.maxMessageSizeBytes(conf)
// Kept in sync with cachedSerializedStatuses explicitly
// This is required so that the Broadcast variable remains in scope until we remove
// the shuffleId explicitly or implicitly.
private val cachedSerializedBroadcast = new HashMap[Int, Broadcast[Array[Byte]]]()
// This is to prevent multiple serializations of the same shuffle - which happens when
// there is a request storm when shuffle start.
private val shuffleIdLocks = new ConcurrentHashMap[Int, AnyRef]()
// requests for map output statuses
private val mapOutputRequests = new LinkedBlockingQueue[GetMapOutputMessage]
// Thread pool used for handling map output status requests. This is a separate thread pool
// to ensure we don't block the normal dispatcher threads.
private val threadpool: ThreadPoolExecutor = {
val numThreads = conf.getInt("spark.shuffle.mapOutput.dispatcher.numThreads", 8)
val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "map-output-dispatcher")
for (i <- 0 until numThreads) {
pool.execute(new MessageLoop)
}
pool
}
// Make sure that we aren't going to exceed the max RPC message size by making sure
// we use broadcast to send large map output statuses.
if (minSizeForBroadcast > maxRpcMessageSize) {
val msg = s"spark.shuffle.mapOutput.minSizeForBroadcast ($minSizeForBroadcast bytes) must " +
s"be <= spark.rpc.message.maxSize ($maxRpcMessageSize bytes) to prevent sending an rpc " +
"message that is too large."
logError(msg)
throw new IllegalArgumentException(msg)
}
def post(message: GetMapOutputMessage): Unit = {
mapOutputRequests.offer(message)
}
/** Message loop used for dispatching messages. */
private class MessageLoop extends Runnable {
override def run(): Unit = {
try {
while (true) {
try {
val data = mapOutputRequests.take()
if (data == PoisonPill) {
// Put PoisonPill back so that other MessageLoops can see it.
mapOutputRequests.offer(PoisonPill)
return
}
val context = data.context
val shuffleId = data.shuffleId
val hostPort = context.senderAddress.hostPort
logDebug("Handling request to send map output locations for shuffle " + shuffleId +
" to " + hostPort)
val mapOutputStatuses = getSerializedMapOutputStatuses(shuffleId)
context.reply(mapOutputStatuses)
} catch {
case NonFatal(e) => logError(e.getMessage, e)
}
}
} catch {
case ie: InterruptedException => // exit
}
}
}
/** A poison endpoint that indicates MessageLoop should exit its message loop. */
private val PoisonPill = new GetMapOutputMessage(-99, null)
// Exposed for testing
private[spark] def getNumCachedSerializedBroadcast = cachedSerializedBroadcast.size
/** 在map out的集合mapStatuses中注册新的Shuffle,参数为Shuffle id和map的个数。 */
def registerShuffle(shuffleId: Int, numMaps: Int) {
if (mapStatuses.put(shuffleId, new Array[MapStatus](numMaps)).isDefined) {
throw new IllegalArgumentException("Shuffle ID " + shuffleId + " registered twice")
}
// add in advance
shuffleIdLocks.putIfAbsent(shuffleId, new Object())
}
/** 根据Shuffle id在mapStatuses中为Shuffle添加map out的状态(存储的map out其实就是map out的状态)。 */
def registerMapOutput(shuffleId: Int, mapId: Int, status: MapStatus) {
val array = mapStatuses(shuffleId)
array.synchronized {
array(mapId) = status
}
}
/** Register multiple map output information for the given shuffle
*
* 同时添加多个map out。
* */
def registerMapOutputs(shuffleId: Int, statuses: Array[MapStatus], changeEpoch: Boolean = false) {
mapStatuses.put(shuffleId, statuses.clone())
if (changeEpoch) {
incrementEpoch()
}
}
/** Unregister map output information of the given shuffle, mapper and block manager *
*
* 在mapStatuses中注销给定Shuffle的map out。
*/
def unregisterMapOutput(shuffleId: Int, mapId: Int, bmAddress: BlockManagerId) {
val arrayOpt = mapStatuses.get(shuffleId)
if (arrayOpt.isDefined && arrayOpt.get != null) {
val array = arrayOpt.get
array.synchronized {
if (array(mapId) != null && array(mapId).location == bmAddress) {
array(mapId) = null
}
}
incrementEpoch()
} else {
throw new SparkException("unregisterMapOutput called for nonexistent shuffle ID")
}
}
/** Unregister shuffle data */
override def unregisterShuffle(shuffleId: Int) {
mapStatuses.remove(shuffleId)
cachedSerializedStatuses.remove(shuffleId)
cachedSerializedBroadcast.remove(shuffleId).foreach(v => removeBroadcast(v))
shuffleIdLocks.remove(shuffleId)
}
/** Check if the given shuffle is being tracked
*
* 判断是否存在给定的Shuffle。
* */
def containsShuffle(shuffleId: Int): Boolean = {
cachedSerializedStatuses.contains(shuffleId) || mapStatuses.contains(shuffleId)
}
/**
* Return the preferred hosts on which to run the given map output partition in a given shuffle,
* i.e. the nodes that the most outputs for that partition are on.
*
* @param dep shuffle dependency object
* @param partitionId map output partition that we want to read
* @return a sequence of host names
*/
def getPreferredLocationsForShuffle(dep: ShuffleDependency[_, _, _], partitionId: Int)
: Seq[String] = {
if (shuffleLocalityEnabled && dep.rdd.partitions.length < SHUFFLE_PREF_MAP_THRESHOLD &&
dep.partitioner.numPartitions < SHUFFLE_PREF_REDUCE_THRESHOLD) {
val blockManagerIds = getLocationsWithLargestOutputs(dep.shuffleId, partitionId,
dep.partitioner.numPartitions, REDUCER_PREF_LOCS_FRACTION)
if (blockManagerIds.nonEmpty) {
blockManagerIds.get.map(_.host)
} else {
Nil
}
} else {
Nil
}
}
/**
* Return a list of locations that each have fraction of map output greater than the specified
* threshold.
*
* @param shuffleId id of the shuffle
* @param reducerId id of the reduce task
* @param numReducers total number of reducers in the shuffle
* @param fractionThreshold fraction of total map output size that a location must have
* for it to be considered large.
*/
def getLocationsWithLargestOutputs(
shuffleId: Int,
reducerId: Int,
numReducers: Int,
fractionThreshold: Double)
: Option[Array[BlockManagerId]] = {
val statuses = mapStatuses.get(shuffleId).orNull
if (statuses != null) {
statuses.synchronized {
if (statuses.nonEmpty) {
// HashMap to add up sizes of all blocks at the same location
val locs = new HashMap[BlockManagerId, Long]
var totalOutputSize = 0L
var mapIdx = 0
while (mapIdx < statuses.length) {
val status = statuses(mapIdx)
// status may be null here if we are called between registerShuffle, which creates an
// array with null entries for each output, and registerMapOutputs, which populates it
// with valid status entries. This is possible if one thread schedules a job which
// depends on an RDD which is currently being computed by another thread.
if (status != null) {
val blockSize = status.getSizeForBlock(reducerId)
if (blockSize > 0) {
locs(status.location) = locs.getOrElse(status.location, 0L) + blockSize
totalOutputSize += blockSize
}
}
mapIdx = mapIdx + 1
}
val topLocs = locs.filter { case (loc, size) =>
size.toDouble / totalOutputSize >= fractionThreshold
}
// Return if we have any locations which satisfy the required threshold
if (topLocs.nonEmpty) {
return Some(topLocs.keys.toArray)
}
}
}
}
None
}
/** 同步epoch加一。 */
def incrementEpoch() {
epochLock.synchronized {
epoch += 1
logDebug("Increasing epoch to " + epoch)
}
}
private def removeBroadcast(bcast: Broadcast[_]): Unit = {
if (null != bcast) {
broadcastManager.unbroadcast(bcast.id,
removeFromDriver = true, blocking = false)
}
}
private def clearCachedBroadcast(): Unit = {
for (cached <- cachedSerializedBroadcast) removeBroadcast(cached._2)
cachedSerializedBroadcast.clear()
}
/**
* 给定Shuffle id,返回其map out集合。首先是对epoch进行锁状态下的同步,保证获取资源的正确性;
* 其次,根据Shuffle id获取指定位置的statuses,如果指定位置没有对应Shuffle id的statuses,
* 那么获取这个位置的statuses快照返回,作为参考;最后,如果操作的epoch与锁状态下的epoch是一致的,
* 将获取到的statuses存入缓存。
*
* */
def getSerializedMapOutputStatuses(shuffleId: Int): Array[Byte] = {
var statuses: Array[MapStatus] = null
var retBytes: Array[Byte] = null
var epochGotten: Long = -1
// Check to see if we have a cached version, returns true if it does
// and has side effect of setting retBytes. If not returns false
// with side effect of setting statuses
def checkCachedStatuses(): Boolean = {
epochLock.synchronized {
if (epoch > cacheEpoch) {
cachedSerializedStatuses.clear()
clearCachedBroadcast()
cacheEpoch = epoch
}
cachedSerializedStatuses.get(shuffleId) match {
case Some(bytes) =>
retBytes = bytes
true
case None =>
logDebug("cached status not found for : " + shuffleId)
statuses = mapStatuses.getOrElse(shuffleId, Array.empty[MapStatus])
epochGotten = epoch
false
}
}
}
if (checkCachedStatuses()) return retBytes
var shuffleIdLock = shuffleIdLocks.get(shuffleId)
if (null == shuffleIdLock) {
val newLock = new Object()
// in general, this condition should be false - but good to be paranoid
val prevLock = shuffleIdLocks.putIfAbsent(shuffleId, newLock)
shuffleIdLock = if (null != prevLock) prevLock else newLock
}
// synchronize so we only serialize/broadcast it once since multiple threads call
// in parallel
shuffleIdLock.synchronized {
// double check to make sure someone else didn't serialize and cache the same
// mapstatus while we were waiting on the synchronize
if (checkCachedStatuses()) return retBytes
// If we got here, we failed to find the serialized locations in the cache, so we pulled
// out a snapshot of the locations as "statuses"; let's serialize and return that
val (bytes, bcast) = MapOutputTracker.serializeMapStatuses(statuses, broadcastManager,
isLocal, minSizeForBroadcast)
logInfo("Size of output statuses for shuffle %d is %d bytes".format(shuffleId, bytes.length))
// Add them into the table only if the epoch hasn't changed while we were working
epochLock.synchronized {
if (epoch == epochGotten) {
cachedSerializedStatuses(shuffleId) = bytes
if (null != bcast) cachedSerializedBroadcast(shuffleId) = bcast
} else {
logInfo("Epoch changed, not caching!")
removeBroadcast(bcast)
}
}
bytes
}
}
/** 停止MapOutPutTracker,清除mapStatuses,清空缓存。 */
override def stop() {
mapOutputRequests.offer(PoisonPill)
threadpool.shutdown()
sendTracker(StopMapOutputTracker)
mapStatuses.clear()
trackerEndpoint = null
cachedSerializedStatuses.clear()
clearCachedBroadcast()
shuffleIdLocks.clear()
}
}
/**
* MapOutputTracker for the executors, which fetches map output information from the driver's
* MapOutputTrackerMaster.
*/
private[spark] class MapOutputTrackerWorker(conf: SparkConf) extends MapOutputTracker(conf) {
protected val mapStatuses: Map[Int, Array[MapStatus]] =
new ConcurrentHashMap[Int, Array[MapStatus]]().asScala
}
private[spark] object MapOutputTracker extends Logging {
val ENDPOINT_NAME = "MapOutputTracker"
private val DIRECT = 0
private val BROADCAST = 1
// Serialize an array of map output locations into an efficient byte format so that we can send
// it to reduce tasks. We do this by compressing the serialized bytes using GZIP. They will
// generally be pretty compressible because many map outputs will be on the same hostname.
def serializeMapStatuses(statuses: Array[MapStatus], broadcastManager: BroadcastManager,
isLocal: Boolean, minBroadcastSize: Int): (Array[Byte], Broadcast[Array[Byte]]) = {
val out = new ByteArrayOutputStream
out.write(DIRECT)
val objOut = new ObjectOutputStream(new GZIPOutputStream(out))
Utils.tryWithSafeFinally {
// Since statuses can be modified in parallel, sync on it
statuses.synchronized {
objOut.writeObject(statuses)
}
} {
objOut.close()
}
val arr = out.toByteArray
if (arr.length >= minBroadcastSize) {
// Use broadcast instead.
// Important arr(0) is the tag == DIRECT, ignore that while deserializing !
val bcast = broadcastManager.newBroadcast(arr, isLocal)
// toByteArray creates copy, so we can reuse out
out.reset()
out.write(BROADCAST)
val oos = new ObjectOutputStream(new GZIPOutputStream(out))
oos.writeObject(bcast)
oos.close()
val outArr = out.toByteArray
logInfo("Broadcast mapstatuses size = " + outArr.length + ", actual size = " + arr.length)
(outArr, bcast)
} else {
(arr, null)
}
}
// Opposite of serializeMapStatuses.
def deserializeMapStatuses(bytes: Array[Byte]): Array[MapStatus] = {
assert (bytes.length > 0)
def deserializeObject(arr: Array[Byte], off: Int, len: Int): AnyRef = {
val objIn = new ObjectInputStream(new GZIPInputStream(
new ByteArrayInputStream(arr, off, len)))
Utils.tryWithSafeFinally {
objIn.readObject()
} {
objIn.close()
}
}
bytes(0) match {
case DIRECT =>
deserializeObject(bytes, 1, bytes.length - 1).asInstanceOf[Array[MapStatus]]
case BROADCAST =>
// deserialize the Broadcast, pull .value array out of it, and then deserialize that
val bcast = deserializeObject(bytes, 1, bytes.length - 1).
asInstanceOf[Broadcast[Array[Byte]]]
logInfo("Broadcast mapstatuses size = " + bytes.length +
", actual size = " + bcast.value.length)
// Important - ignore the DIRECT tag ! Start from offset 1
deserializeObject(bcast.value, 1, bcast.value.length - 1).asInstanceOf[Array[MapStatus]]
case _ => throw new IllegalArgumentException("Unexpected byte tag = " + bytes(0))
}
}
/**
* Given an array of map statuses and a range of map output partitions, returns a sequence that,
* for each block manager ID, lists the shuffle block IDs and corresponding shuffle block sizes
* stored at that block manager.
*
* If any of the statuses is null (indicating a missing location due to a failed mapper),
* throws a FetchFailedException.
*
* @param shuffleId Identifier for the shuffle
* @param startPartition Start of map output partition ID range (included in range)
* @param endPartition End of map output partition ID range (excluded from range)
* @param statuses List of map statuses, indexed by map ID.
* @return A sequence of 2-item tuples, where the first item in the tuple is a BlockManagerId,
* and the second item is a sequence of (shuffle block ID, shuffle block size) tuples
* describing the shuffle blocks that are stored at that block manager.
*/
private def convertMapStatuses(
shuffleId: Int,
startPartition: Int,
endPartition: Int,
statuses: Array[MapStatus]): Seq[(BlockManagerId, Seq[(BlockId, Long)])] = {
assert (statuses != null)
val splitsByAddress = new HashMap[BlockManagerId, ArrayBuffer[(BlockId, Long)]]
for ((status, mapId) <- statuses.zipWithIndex) {
if (status == null) {
val errorMessage = s"Missing an output location for shuffle $shuffleId"
logError(errorMessage)
throw new MetadataFetchFailedException(shuffleId, startPartition, errorMessage)
} else {
for (part <- startPartition until endPartition) {
splitsByAddress.getOrElseUpdate(status.location, ArrayBuffer()) +=
((ShuffleBlockId(shuffleId, mapId, part), status.getSizeForBlock(part)))
}
}
}
splitsByAddress.toSeq
}
}