Android ThreadLocal 源码分析

1.为啥 说是Android ThreadLocal ,而不是java ThreadLocal,因为Android 对它进行了 优化.优化地方:内存复用,使用弱引用解决内存泄漏.而且他们处理方式也不同Java 使用类来包裹 key和value的.使用魔数0x61c88647, 计算得到的索引值偶数和奇数之间不断切换.而Android 只是在偶数索引index 存放key ,index+1来存放值.魔数为0x61c88647*2 得到的索引值都是偶数,非常适合它的处理方式.

2.从使用来分析源码.

    ThreadLocal local=new ThreadLocal<>();
           Object data= local.get();
           if (data==null){
               data=new Object();
            local.set(data);
           }
               //拿到对象来处理一下问题
            
        } 
  

3.ThreadLocal对象的创建:  

   public ThreadLocal() {}
 就一个空构造 ,那么创建对象都做了什么呢,那就看它成员属性了.

  /** Weak reference to this thread local instance. */
    private final Reference> reference
            = new WeakReference>(this);
//弱引用持有它,有利于回收,防止内存泄漏.如果他为null时它所在的存放数组索引的地方将被设置为TOMBSTONE 对象,value所在的地方设置为null,不在持有它对象也有利于回收.下一个ThreadLocal 对象set时.如果找到数组存放的索引,而且在这个索引数组里面的对象为TOMBSTONE将会被替换成这个.从而达到内存复用.
 /** Hash counter. */
    private static AtomicInteger hashCounter = new AtomicInteger(0);

    /**
     * Internal hash. We deliberately don't bother with #hashCode().
     * Hashes must be even. This ensures that the result of
     * (hash & (table.length - 1)) points to a key and not a value.
     *
     * We increment by Doug Lea's Magic Number(TM) (*2 since keys are in
     * every other bucket) to help prevent clustering.
     */
    private final int hash = hashCounter.getAndAdd(0x61c88647 * 2);
为啥使用0x61c88647  防止集中,为啥*2 因为key  所在的索引为偶数.第一次计算时hash 为零.也就是第一次创建ThreadLocal key 必然在0索引.然后系统已经使用了n次(hashCounter 为静态...).

主线程存放的对象

Android ThreadLocal 源码分析_第1张图片

其中Looper最为熟悉.

3.get()方法

   public T get() {
        // Optimized for the fast path.
        Thread currentThread = Thread.currentThread();
//value 是从线程对象 localValues 成员属性取出来的中,所以不同线程有不同value, 就是有不同的副本.
        Values values = values(currentThread);
        if (values != null) {
            Object[] table = values.table;
            int index = hash & values.mask;
// 尝试从第一次计算hash 得到索引取值,如果key 等于 将执行getAfterMiss 方法.一般都存在第一次计算得到索引的地方
            if (this.reference == table[index]) {
                return (T) table[index + 1];
            }
        } else {
//初始化数组
            values = initializeValues(currentThread);
        }

        return (T) values.getAfterMiss(this);
    }

 Object getAfterMiss(ThreadLocal key) {
            Object[] table = this.table;
            int index = key.hash & mask;

            // If the first slot is empty, the search is over.
            //如果第一次存放的索引都为null ,那么必然没有set过数据
            if (table[index] == null) {
                Object value = key.initialValue();//默认是null

                // If the table is still the same and the slot is still empty...
// 看到这里挺懵圈的,为啥这样判断呢.在同一个线程是串行执行的,不应该table 发生变化才对(并发问题)
// 直到看 这句话The table changed during initialValue() 就突然明白,如果继承重写initialValue方法在里面set 是不是有可能发生扩容,扩容时索引可能发生偏移.
                if (this.table == table && table[index] == null) {
                    table[index] = key.reference;
                    table[index + 1] = value;
                    size++;
                    //扩容或者检查key 是否被回收
                    cleanUp();
                    return value;
                }

                // The table changed during initialValue().
// 当发生扩容时 就要重新遍历索引了
                put(key, value);
                return value;
            }

            // Keep track of first tombstone. That's where we want to go back
            // and add an entry if necessary.
            int firstTombstone = -1;

            // Continue search.
// 如果不为空 那就继续遍历 而遍历的范围永远都在0-table.length-1 之间,而且必然是偶数
            for (index = next(index);; index = next(index)) {
                Object reference = table[index];
                if (reference == key.reference) {
                    return table[index + 1]; //找到就返回
                }

                // If no entry was found...
                // 这里的逻辑跟上面差不多的
                if (reference == null) {
                    Object value = key.initialValue();

                    // If the table is still the same...
                    if (this.table == table) {
                        // If we passed a tombstone and that slot still
                        // contains a tombstone...
                        if (firstTombstone > -1
                                && table[firstTombstone] == TOMBSTONE) {
//这里内存复用
                            table[firstTombstone] = key.reference;
                            table[firstTombstone + 1] = value;
                            tombstones--;
                            size++;

                            // No need to clean up here. We aren't filling
                            // in a null slot.
                            return value;
                        }

                        // If this slot is still empty...
                        if (table[index] == null) {
                            table[index] = key.reference;
                            table[index + 1] = value;
                            size++;

                            cleanUp();
                            return value;
                        }
                    }

                    // The table changed during initialValue().
                    put(key, value);
                    return value;
                }

                if (firstTombstone == -1 && reference == TOMBSTONE) {
                    // Keep track of this tombstone so we can overwrite it.
// 为啥不把  table[firstTombstone] = key.reference...这些语句 放到这里来执行呢.万一后面还有 //reference ==key.reference就不就重复了吗 
                    firstTombstone = index;
                }
            }
        }

4.cleanUp():扩容或者回收标记(设置TOMBSTONE)


        private void cleanUp() {
// 检查是否扩容
            if (rehash()) {
                // If we rehashed, we needn't clean up (clean up happens as
                // a side effect).
                return;
            }
          //数量为0 那就没有必要进行回收标记了
            if (size == 0) {
                // No live entries == nothing to clean.
                return;
            }

            // Clean log(table.length) entries picking up where we left off
            // last time.
//这里要从上一次的位置开始检查,为什么呢 因为遍历次数为log2Table.length ,不能完全遍历完,索引需要记录上一次位置才能 完全遍历完.
            int index = clean;
            Object[] table = this.table;
            for (int counter = table.length; counter > 0; counter >>= 1,
                    index = next(index)) {
                Object k = table[index];

                if (k == TOMBSTONE || k == null) { //已经标记跳过
                    continue; // on to next entry
                }

                // The table can only contain null, tombstones and references.
                @SuppressWarnings("unchecked")
                Reference> reference
                        = (Reference>) k;
                if (reference.get() == null) {
                    // This thread local was reclaimed by the garbage collector.
                    table[index] = TOMBSTONE; //有利于回收
                    table[index + 1] = null; 
                    tombstones++;
                    size--;
                }
            }

            // Point cursor to next index.
            clean = index;//记录
        }

      
        private boolean rehash() {
 
            if (tombstones + size < maximumLoad) {
                return false;
            }

            int capacity = table.length >> 1;

         
            int newCapacity = capacity;
           //当数量大于四分之一时 在扩容两倍 .而当数量大于2分之1 getAndAdd() 才会获得 0索引,后面获取的索引会跟之前一样(测试过).所以1/3 或者1/4 扩容都可以.也就是说在1/3 或者1/4之前获取 索引值是不冲突 ,在set 时用遍历有点想不通.
            if (size > (capacity >> 1)) {
                // More than 1/2 filled w/ live entries.
                // Double size.
                newCapacity = capacity * 2;
            }

            Object[] oldTable = this.table;

            // Allocate new table.
            initializeTable(newCapacity);

            // We won't have any tombstones after this.
            this.tombstones = 0;

            // If we have no live entries, we can quit here.
            if (size == 0) {
                return true;
            }

            // Move over entries.
       //既然索引不冲突 向后或者向前遍历都没有关系
            for (int i = oldTable.length - 2; i >= 0; i -= 2) {
                Object k = oldTable[i];
                if (k == null || k == TOMBSTONE) {
                    // Skip this entry.
                    continue;  //这里回收标记已经不用管了,因为创建了新的数组,所以上面this.tombstones = 0
                }

                // The table can only contain null, tombstones and references.
                @SuppressWarnings("unchecked")
                Reference> reference
                        = (Reference>) k;
                ThreadLocal key = reference.get();
                if (key != null) {
                    // Entry is still live. Move it over.
                    add(key, oldTable[i + 1]); // 找到位置添加进去就行了
                } else {
                    // The key was reclaimed.
                    size--;
                }
            }

            return true;
        }

 5.set(...) 方法:

       

 直接贴vaules.put..
 void put(ThreadLocal key, Object value) {
            cleanUp();//说过

          
            int firstTombstone = -1;
      //getAfter 部分代码差不多 ,唯一比较不理解的是既然索引不冲突 ,是否直接用 key.hash & mask就得了?为啥还遍历?
            for (int index = key.hash & mask;; index = next(index)) {
                Object k = table[index];

                if (k == key.reference) {
                    // Replace existing entry.
                    table[index + 1] = value;
                    return;
                }

                if (k == null) {
                    if (firstTombstone == -1) {
                        // Fill in null slot.
                        table[index] = key.reference;
                        table[index + 1] = value;
                        size++;
                        return;
                    }

                    // Go back and replace first tombstone.
                    table[firstTombstone] = key.reference;
                    table[firstTombstone + 1] = value;
                    tombstones--;
                    size++;
                    return;
                }

                // Remember first tombstone.
                if (firstTombstone == -1 && k == TOMBSTONE) {
                    firstTombstone = index;
                }
            }
        }

ps.终于知道为啥要遍历了,因为 static AtomicInteger hashCounter 那么 在另一个线程创建多个Threadlocal 对象,在返回主线程创建就可能出现索引冲突.怪不得自己计算的索引值跟上面的图不一样.

你可能感兴趣的:(Android,框架)