5.Multil-task lasso(多任务lasso回归分析)

MultiTaskLasso 是一种估计多元回归系数的线性模型, y 是一个2D数组,形式为(n_samples,n_tasks). 其限制条件是和其他回归问题一样,是选择的特征,同样称为 tasks.

接下来的图示比较了通过使用一个简单的Lasso或者MultiTaskLasso得到的W中非零的位置。 Lasso 估计量分散着非零值而MultiTaskLasso所有的列全部是非零的。

数学表达上,它包含了一个使用 \ell_1 \ell_2 先验作为正则化因子。其目标函数是最小化:


这里

MultiTaskLasso 类的实现使用了坐标下降算法来拟合系数。

5.Multil-task lasso(多任务lasso回归分析)_第1张图片

5.Multil-task lasso(多任务lasso回归分析)_第2张图片

拟合的时间序列模型

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import MultiTaskLasso, Lasso

rng = np.random.RandomState(42)

# Generate some 2D coefficients with sine waves with random frequency and phase
n_samples, n_features, n_tasks = 100, 30, 40
n_relevant_features = 5
coef = np.zeros((n_tasks, n_features))
times = np.linspace(0, 2 * np.pi, n_tasks)
for k in range(n_relevant_features):
    coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1))

X = rng.randn(n_samples, n_features)
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)

coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_

###############################################################################
# Plot support and time series
fig = plt.figure(figsize=(8, 5))
plt.subplot(1, 2, 1)
plt.spy(coef_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'Lasso')
plt.subplot(1, 2, 2)
plt.spy(coef_multi_task_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'MultiTaskLasso')
fig.suptitle('Coefficient non-zero location')

feature_to_plot = 0
plt.figure()
plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth')
plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso')
plt.plot(coef_multi_task_lasso_[:, feature_to_plot],
         'r', label='MultiTaskLasso')
plt.legend(loc='upper center')
plt.axis('tight')
plt.ylim([-1.1, 1.1])
plt.show()

你可能感兴趣的:(机器学习算法)