- Gradio学习之旅(0)——初识Gradio以及后续目录总览
AI_Y.
Gradio学习之旅学习pythonchatgpt
在本系列文中,我们将会从零介绍Gradio以及其中的一些属性,创作本系列的初衷是在国内很难查询到和Gradio相关的教程文档一类,本人在开发学习过程中导致遇到了许多问题。所以决定写一系列关于介绍Gradio的文章。由于是第一次在CSDN上创作,所以有什么好的建议都可以提出来,我会努力改进的!让我们在AI学习的道路上加油吧!!!文章目录前言一、Gradio是什么?二、让我们来实现Helloworld
- MATLAB符号函数绘制各种函数图像,ezplot()函数 ezplot3()函数
Python数据分析与机器学习
可视化函数图像matlab画图matlab开发语言信息可视化
我们学习常遇见的函数种类有显函数,隐函数,参数方程三种,对于隐函数绘制图像比较麻烦,给大家介绍一种简单实用的一中画函数的方法。函数介绍二维曲线ezplot()函数ezplot()函数用于绘制显函数,隐函数,参数方程二维图像,函数格式ezplot(f)直接绘制图像ezplot(f,[min,max])指定函数x的值域范围三维曲线ezplot3()函数ezplot3()函数用于绘制显函数,隐函数,参数
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 大型语言模型高效预训练策略的比较研究
二进制独立开发
非纯粹GenAI深度思索GenAI与Python语言模型深度学习人工智能自然语言处理python开发语言机器学习
文章目录摘要1.引言2.背景与挑战2.1LLM中的预训练2.2扩展LLM的挑战3.高效预训练策略3.1增量训练3.1.1理论基础3.1.2实际实现3.1.3实验结果3.2混合优化3.2.1理论基础3.2.2实际实现3.2.3实验结果3.3其他新兴技术3.3.1知识蒸馏3.3.2稀疏训练3.3.3数据增强3.3.4迁移学习4.比较分析4.1性能指标4.2增量训练vs.混合优化4.2.1模型精度4.2
- npm和webpack学习
fechild
npmwebpack学习
npmnpmnpminstallxxxnpminstallxxx--savenpminstallxxx--save-dev安装在node_modules不在package.json安装在node_modules,在package.json的dependencies,生产环境打包时,会出现在依赖包里。安装在node_modules,在package.json的devDependencies,生产环境
- UE学习日志#8 GAS--ASC源码简要分析5 GameplayEffects: Primary outward facing API for other systems P2
学游戏开发的
UE学习日志学习游戏引擎
注:1.这个分类是按照源码里的注释分类的2.本篇是通读并给出一些注释形式的,并不涉及结构性的分析3.看之前要对UE的GAS系统的定义有初步了解4.因为都是接口函数,有些没细看的研究那一部分的时候会细看8OnPredictiveGameplayCueCatchupCall预测性添加的GC,移除标签并尝试InvokeGC事件ByTag/**Calledforpredictivelyaddedgamep
- 学习记录:OpenMV 摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。
DIY机器人工房
openmv学习笔记学习opencvpython
代码解释:整体功能:此代码是使用OpenMV摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。首先,对摄像头进行初始化,包括重置、设置像素格式和帧大小,并等待设置生效。然后创建一个时间对象用于计算帧率。最后在一个无限循环中不断采集图像并打印出每秒采集的帧数。#此作品遵循MIT许可证授权。#版权所有(c)2013-2023OpenMVLLC。保留所有权利。#h
- PX4源码学习二--PX4环境搭建
znr1995
px4ubuntu
Ubuntu16.04环境搭建:预环境处理:(把用户添加到用户组"dialout":重新登录一回使其生效)sudousermod-a-Gdialout$USER#ubuntu自带端口管理会影响这个sudoapt-getremovemodemmanager依赖环境安装:sudoadd-apt-repositoryppa:george-edison55/cmake-3.x-ysudoapt-getup
- AI编程助手ScriptEcho:革新你的编程学习之旅
前端
在当今数字时代,编程技能已成为一项越来越重要的技能,无论是想成为专业的软件工程师,还是想提升自身竞争力,学习编程都至关重要。然而,编程学习之路并非一帆风顺,陡峭的学习曲线和大量的实践项目常常让初学者望而却步。许多人卡在繁琐的配置和基础代码搭建上,难以将精力集中在核心业务逻辑的学习和项目实践中。为了解决这一问题,越来越多的人开始寻找更高效的学习工具,而AI写代码工具ScriptEcho正是其中之一,
- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- Presto 时间、日期及计算相关日期
三生暮雨渡瀟瀟
prestobigdatapresto
由于工作中在数据迁移,大数据平台数据查询引擎使用Presto,和传统的数据库时间函数有区别,整理一版,供大家参考,一起学习,有错误欢迎指正。1、查询当前日期selectcurrent_date;2、查询当前时间selectcurrent_timestamp;_col0---------------------------------------2022-01-0220:45:58.551Asia/
- SwiftUI 2.0实现动态粘性页脚动画指南
一曲歌长安
本文还有配套的精品资源,点击获取简介:在SwiftUI2.0中创建类似Medium.com的动态粘性页脚,涉及视图构建、环境值跟踪、自定义组件设计、动画实现以及响应式布局,以增强用户体验并提升应用程序的互动性。开发者将学习到如何通过滚动位置的变化来控制页脚的透明度和尺寸,并通过动画使交互更为流畅自然。1.SwiftUI核心概念理解SwiftUI是苹果公司推出的一套声明式UI框架,它使得开发者可以使
- 机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
promptllm人工智能
基础算法常见面试篇1.1过拟合和欠拟合常见面试篇一、过拟合和欠拟合是什么?二、过拟合/高方差(overfiting/highvariance)篇2.1过拟合是什么及检验方法?2.2导致过拟合的原因是什么?2.3过拟合的解决方法是什么?三、欠拟合/高偏差(underfiting/highbias)篇3.1欠拟合是什么及检验方法?3.2导致欠拟合的原因是什么?3.3过拟合的解决方法是什么?1.2Bat
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- Redis实战-初识Redis
啥都想学的又啥都不会的研究生
redis数据库缓存
初识Redis1、Redis简介2、Redis数据结构简介3、Redis命令3.1字符串3.2列表3.3集合3.4散列3.5有序集合3.6发布与订阅3.7其他命令3.7.1排序3.7.2过期时间如有侵权,请联系~如有错误,也欢迎批评指正~本篇文章大部分是来自学习《Redis实战》的笔记1、Redis简介Redis是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的
- 深度学习环境配置指南!(Windows、Mac、Ubuntu全讲解)
Charmve
#AI学习指导:从入门到进阶软件安装环境配置计算机视觉实战文档详细开放源码cudalinuxgpuanacondaubuntu
关注“迈微AI研习社”,内容首发于公众号作者:伍天舟、马曾欧、陈信达入门深度学习,很多人经历了从入门到放弃的心酸历程,且千军万马倒在了入门第一道关卡:环境配置问题。俗话说,环境配不对,学习两行泪。如果你正在面临配置环境的痛苦,不管你是Windows用户、Ubuntu用户还是苹果死忠粉,这篇文章都是为你量身定制的。接下来就依次讲下Windows、Mac和Ubuntu的深度学习环境配置问题。一、Win
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 选课(贪心) pta
wzx_Eleven
算法
小明是个好学的程序猿,他想在一天内尽可能多的选择课程进行学习。在下列课程中,他能选择的最多课程是几门?输入格式:第一行为一个整数n,表示课程总数。接下来每行为x,y,z表示课程名,开始时间,结束时间。输出格式:输出一个整数,表示小明最多可选的课程数。输入样例:5Art910English9.310.3Math1011Computer10.311.3Music1112输出样例:在这里给出相应的输出。
- 大三学生面试经历(2)
无限大.
面试面试职场和发展
继续昨天的内容,我面试的是一个Java实习岗,但是居然也问了我前端(vue)相关的问题最大的感觉就是,现在真的越来越卷了,后端都把前端的东西卷完了,当时是线上面试,感觉答的不太好(因为确实没准备的太全),接下来的时间继续加强加强这些方面的学习愿与诸君共勉!具体如下1.请简述Vue.js的生命周期函数及其执行顺序2.Vue.js中的v-bind指令和v-model指令有什么区别?3.请简述Vue.j
- 计算1+2+3+4+5+6...+100用python_100个Python练手小程序,学习python的很好的资料
weixin_39879881
原标题:100个Python练手小程序,学习python的很好的资料100个Python练手小程序,学习python的很好的资料,覆盖了python中的每一部分,可以边学习边练习,更容易掌握python。本文附带基础视频教程:私信回复【基础】就可以获取的【程序1】题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?1.程序分析:可填在百位、十位、个位的数字都是1、2、
- 2024年12月蓝桥杯Scratch12月stema选拔赛真题试卷
嗨信奥
scratch青少年编程蓝桥杯
完整的题目及在线模拟考试可点击下方链接前往:2024年蓝桥杯Scratch12月stema选拔赛真题_scratch_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tidan/scratch/show-267.html
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- nodeJS 系统学习(模块-章节1)
BYh_blog
js基础node.jsjavascript
module(模块)1.概念(理论)利用模块化,根据代码功用将应用拆分为不同的模块。增强代码的可读性,可迭代性等一切具有客观良性的作用。一般情况下每个文件就是一个模块。文件路径则是模块名。2.实践(操作)CODE模块之间可以相互引用。通过require、exports、module三个预先定义好的node环境变量module.js测试模块代码console.log(module);module.e
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- F#语言的图形用户界面
沈霁晨
包罗万象golang开发语言后端
F#语言的图形用户界面开发引言随着软件开发的日益复杂化,图形用户界面(GUI)在现代应用程序中的重要性不可忽视。它提供了一种直观的方式,使用户能够与应用程序进行交互。F#语言作为一种函数式编程语言,近年来在开发领域越来越受到关注,尤其是在数据分析和机器学习领域。但F#同样能够用于图形用户界面的开发,尤其是结合.NET平台及其丰富的库。本文将深入探讨F#语言在图形用户界面开发中的应用,包括常用的框架
- JavaWeb,会话管理的学习
曦月落雨
javaWebjavaweb
会话管理概述无状态协议无状态就是不保存状态,HTTP就是无状态协议,HTTP协议自身不会对请求和响应之间的通信状态进行保存,也就是说,在HTTP协议这个级别,协议对于发送过的请求或者响应都不做持久化处理。会话管理实现的手段cookie是在客户端保留少量数据的技术,主要通过响应头向客户端响应一些客户端要保留的信息session是在服务器端保留更多的数据的技术,主要通过HttpSession对象保存一
- 【Springboot】——响应与分层解耦架构
Y小夜
架构springboot后端javaspring
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,设计模式、Python机器学习、Springboot等主页链接:Y小夜-CSDN博客目录响应响应数据✨@ResponseBody✨G
- TypeScript - 利用GPT辅助学习
你会魔法吗✧(≖ ◡ ≖✿)
前端-网页设计-H5C3J6typescriptgpt学习
TypeScript一、基础1.安装TypeScript2.创建你的第一个TypeScript文件3.编译TypeScript代码4.变量声明与类型注解5.函数与类型注解6.总结二、进阶常用类型1.类型别名2.对象类型3.类型断言4.`typeof`操作符高级类型1.类2.交叉类型3.泛型与`keyof`4.索引签名类型与索引查询类型5映射类型6.总结三、文件类型1.`.ts`文件—TypeScr
- html与css学习笔记(2)
陈王卜
学习笔记
一、CSS引入方式具体有3种引入方式,语法如下表格所示:引入方式语法内联样式在HTML标签中使用style属性,例如:这是一个红色的div内部样式表在HTML文件的标签内使用标签,例如:div{color:red;}外部样式表使用标签在HTML文件的标签内引入外部CSS文件,例如:对于上述3种引入方式,企业开发的使用情况如下:1.内联样式会出现大量的代码冗余,不方便后期的维护,所以不常用。2.内部
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla