- 多模态大模型论文总结
sudun_03
语言模型算法人工智能
MM1:Methods,Analysis&InsightsfromMultimodalLLMPre-training在这项工作中,我们讨论了建立高性能的多模态大型语言模型(MLLMs)。特别是,我们研究了各种模型结构组件和数据选择的重要性。通过对图像编码器、视觉语言连接器和各种预训练数据选择的仔细而全面的验证,我们确定了几个关键的设计教训。例如,我们证明,与其他已发表的多模式预训练结果相比,对于使
- ChatGPT魔法2:两大准则
王丰博
GPTchatgpt
1.Prompt2.原则第一原则:清晰Clear具体Specific小细节:1)使用双引号2)举个例子(比如名字,不要叫铁蛋)第二原则:给他时间比如讲一半,使用请继续(有字数限制)Eg1:如果写书,需要一步一步走,概要,然后分成八个章节,然后第一个章节,分段Eg2:小孩家教Eg3:学英语。润色及优化Eg4:论文总结、翻译等ChatGPT4.0的Plugin。Eg5:如何有记忆功能:记忆窗口(Cha
- [论文精读]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
论文精读人工智能深度学习学习图论分类笔记
论文网址:https://arxiv.org/abs/2205.12465论文代码:https://github.com/Wayfear/FBNETGEN英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!目录1.省流版1.1.心得1.2.论文总结图2.论文逐段精读2.1.Abstr
- [论文总结] 深度学习在农业领域应用论文笔记12
落痕的寒假
论文总结深度学习论文阅读人工智能
文章目录1.3D-ZeF:A3DZebrafishTrackingBenchmarkDataset(CVPR,2020)摘要背景相关研究所提出的数据集方法和结果个人总结2.Automatedflowerclassificationoveralargenumberofclasses(ComputerVision,Graphics&ImageProcessing,2008)摘要背景分割与分类数据集和实
- AAAI 2024 时序和时空论文总结
STLearner
时空数据数据挖掘论文阅读智慧城市机器学习深度学习pytorchpython
AAAI今年共有12100篇投稿(MainTechnicalTrack),有9862篇经过严格审稿,共录取了2342篇论文,录取率23.75%。12月19日,为AAAI2024camera-ready的截止日期,AAAI24效率很高,也很快放出了录取论文的标题和作者。AAAI2024将在2024年2月20日到27日于加拿大温哥华举行。本文总结了2024AAAI上有关时空数据(spatial-tem
- NeurIPS 2023 时间序列相关论文总结
STLearner
大数据智慧城市pytorch数据挖掘论文阅读深度学习
祝大家中秋国庆双节快乐!NeurIPS2023将于11月28日到12月9日在美国路易斯安那州新奥尔良举行。根据官方公布的邮件显示,今年共有12343篇投稿,接受率为26.1%,官网显示一共有3564篇论文。本文总结了NeurIPS23时间序列(不含时空数据,已经另外总结)的相关论文。包括时间序列预测,分类,异常检测,因果发现,交通,医疗等领域时间序列应用和大模型在时间序列问题建模的探索等方向。1.
- WWW 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
STLearner
时空数据人工智能机器学习深度学习数据挖掘智慧城市论文阅读
WWW2024已经放榜,本次会议共提交了2008篇文章,researchtracks共录用约400多篇论文,录用率为20.2%。本次会议将于2024年5月13日-17日在新加坡举办。本文总结了WWW2024有关时间序列(TimeSeries)和时空数据(Spatial-Temporal)的相关文章,部分挂在了arXiv上。时间序列Topic:时序预测,异常检测,时域频域,大模型等时空数据Topic
- 2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
Siberia_
一、基本信息 题目:Anomalydetectionwithrobustdeepautoencoders 期刊/会议:ACMSIGKDD 发表时间:2017年 引用次数:26二、论文总结2.1研究方向 提高自编码模型的抗噪声能力2.2写作动机 受鲁棒PCA的启发,将原始数据分成正常数据和噪声、异常数据两部分,然后进行交替训练。2.3创新之处 除了使用传统的L1正则化去约束噪声部分之外
- Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation 论文总结
Lancelot_Xwx
sql语言模型数据库论文阅读
目录论文摘要Summary:问题表示(Questionrepresentation)1.BasicPrompt(BSPBS\_PBSP)2.TextRepresentationPrompt(TRPTR\_PTRP)3.OpenAIDemostrationPrompt(ODPOD\_PODP)4.CodeRepresentationPrompt(CRPCR\_PCRP)5.AlpacaSFTProm
- (论文总结)Beyond the Nav-Graph: Vision-and-Language Navigation in ContinuousEnv
Hoyyyaard
HabitatVisualNavigation深度学习人工智能
文章目录1IntroductionVLN研究的假设Vision-and-LanguageNavigationinContinuousEnvironments.2RelatedWorkLanguage-guidedVisualNavigationTasks3VLNinContinuousEnvironments(VLN-CE)ContinuousMatterport3DEnvironmentsinH
- 论文推荐:大语言模型在金融领域的应用调查
deephub
语言模型金融人工智能深度学习
这篇论文总结了现有LLM在金融领域的应用现状,推荐和金融相关或者有兴趣的朋友都看看论文分为2大部分:1、作者概述了使用llm的现有方法包括使用零样本或少样本的预训练模型,对特定于领域的数据进行微调,还有从头开始训练定制llm,并给出了关键模型的总结与评价。2、根据给定的用例、数据约束、计算和性能需求,提出决策框架,指导选择合适的LLM解决方案,这是这篇论文可以好好阅读的地方,因为论文还对在金融领域
- ICCV 2023 超分辨率(super-resolution)方向上接收论文总结
yyywxk
ICCV2023官网链接:https://iccv2023.thecvf.com/会议时间:2023年10月2日至6日,法国巴黎(Paris)。ICCV2023统计数据:收录2160篇。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分SRFormer:PermutedSelf-AttentionforSingleImageSuper-ResolutionPaper:http:/
- ORB-SLAM2论文总结
Mr.Qin_
SLAMslamorbORB-SLAM2
ORB-SLAM2学文学习总结1系统概述2加速特征点匹配策略2.1词袋模型加速匹配2.2恒速运动模型加速匹配3系统原理详解3.1初始化3.2跟踪线程3.3局部建图线程3.4回环检测线程4一些总结4.1单目、双目、RGBD的差别4.2系统所用到的优化1系统概述 ORB-SLAM2支持单目、双目、RGB-D相机的输入,整个系统包含三个线程跟踪线程、局部建图线程、回环检测线程(当检测到回环时,回环融合
- The Rise and Potential of Large Language Model Based Agents: A Survey 导读
Travis_del
大语言模型aiagent语言模型人工智能自然语言处理
这篇论文探讨了基于大型语言模型(LLM)的智能代理的发展和潜力。传统的AI算法或训练策略只能提高特定任务的表现,而LLM作为通用且强大的模型,可以为设计适应不同场景的智能代理提供基础。作者提出了一个包含“大脑”、“感知”和“行动”的通用框架,并将其应用于单个代理、多代理和人机合作等不同应用场景中。此外,他们还探索了LLM代理在社会中的行为和个性特征,以及它们对人类社会的启示。该论文总结了一些关键问
- 工作分析文献综述_不可错过的经验!北大教授分析124 篇不合格硕士学位论文总结六大典型问题!...
weixin_39929635
工作分析文献综述数据导论论文论文框架和目录区别
根据词条的词频统计状况,按占比情况由高到低排列,不合格学位论文大致存在“作者科研能力不足”“论文规范性欠缺”“论文创新性和价值性不高”“文献综述质量较低”“作者学术态度和行为不端正”及“选题意义和严谨性不够”六大问题,占比分别为38%、29%、13%、8%、7%和5%。由于这六大问题下面又衍生出多个问题,受篇幅限制,本文仅从“不合格论文”存在的诸多问题中总结归纳出其中最具代表性的问题,作为不合格学
- ECCV 2022 超分辨率(super-resolution)方向上接收论文总结(持续更新)
yyywxk
ECCV2022除了著名的CVPR、ICCV,ECCV(欧洲计算机视觉国际会议)也是计算机视觉三大国际顶级会议之一,每两年召开一次。本届ECCV2022将在10月23日-27日的以色列特拉维夫(Tel-Aviv)举行,采取线下和线上混合形式召开[1]。而本届会议论文录用率不足20%。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分CADyQ:Content-AwareDynam
- 大模型日报-20240119
程序无涯海
大模型资讯篇AIGC大模型chatGPTAI动态日报
这里写目录标题机器人领域首个开源视觉-语言操作大模型,RoboFlamingo框架激发开源VLMs更大潜能用大模型帮程序员找Bug,中科院剖析102篇论文总结出这些方案Nature子刊|化学家和机器人都可以读懂,用于机器人合成可重复性的通用化学编程语言StabilityAI发布StableCode3B模型,没有GPU也能本地运行上海AI实验室书生·浦语2.0正式开源,回归语言建模本质OpenAI组
- 【论文总结】基于深度学习的特征点提取,特征点检测的方法总结
醉酒柴柴
深度学习人工智能学习笔记论文阅读
这里写目录标题相关工作1.DiscriminativeLearningofDeepConvolutionalFeaturePointDescriptors(2015)网络结构sift算法损失函数的构建2.MatchNet(2015)网络中的组成部分其他组成部分损失函数结果3.LIFT:LearnedInvariantFeatureTransform(2016)网络结构训练网络结构损失函数训练和测试
- Deep Learning Based Channel Estimation论文读后感+论文复现,自己总结的
Martin__Liu
OFDM+机器学习/深度学习深度学习计算机视觉人工智能网络通信数字通信
DeepLearningBasedChannelEstimation的读后感,论文总结+论文复现DeepLearningBasedChannelEstimation1.这一篇论文到底要做什么2.将这两个网络训练好了,然后就是利用5,10,15,20,25,30db的数据集进行预测。3.就是均方误差的计算4.为什么这一篇文章自己没有办法进行了?DeepLearningBasedChannelEsti
- 点云相关论文总结
计算机视觉-Archer
人工智能
点云Backbone全链接-PointNet++:https://arxiv.org/pdf/1706.02413.pdfTransformer-PointTransformer:https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Point_Transformer_ICCV_2021_paper.pdf3DCNN-https://
- WSDM 2023 2024时空&时序论文总结
STLearner
时空数据大数据智慧城市pytorch数据挖掘论文阅读深度学习机器学习
WSDM(WebSearchandDataMining)是CCFB类会议,清华A类会议(一年就100来篇怎么能不算顶会!)WSDM2024将在2024年3月4日-3月8日在墨西哥梅里达(Mérida,México)举行。目前官网已经放出了所有被录用论文的表单(链接在相关链接给出)。本次会议共收录112篇论文。WSDM2023在2023年2月27日到3月3日在新加坡举行,公布的录用结果为,共收到投稿
- 基于智能手机的行人惯性追踪数据集模型与部署
程序员石磊
室内定位智能手机
论文总结这篇《Smartphone-basedPedestrianInertialTracking:Dataset,Model,andDeployment》论文介绍了一种基于智能手机惯性测量单元(IMU)的行人追踪和定位系统。主要内容和贡献如下:数据集和实验设计:作者开发了一个智能手机惯性测量数据集(SIMD),包含超过4500条步行轨迹,涵盖了约190小时的行走时间和700多公里的总行程。数据集
- 论文总结 IndoTrack: Device-Free Indoor Human Tracking with Commodity Wi-Fi
AnastasiaJ
WiFi定位论文总结
IndoTrack:Device-FreeIndoorHumanTrackingwithCommodityWi-FiACM2017应用背景:室内人员跟踪对于许多实际应用(例如安全监控,行为分析和老人护理)都是至关重要的。先前的解决方案通常需要由人类目标携带专用设备,这在诸如老人护理和陌生人闯入的情况下是不便甚至是不可行的,这就需要无设备室内人员跟踪。已有方案:ⅰ基于摄像头,需要密集部署并引发严重隐
- 基于CNN和双向gru的心跳分类系统
deephub
cnngru深度学习神经网络
CNNandBidirectionalGRU-BasedHeartbeatSoundClassificationArchitectureforElderlyPeople是发布在2023MDPIMathematics上的论文,提出了基于卷积神经网络和双向门控循环单元(CNN+BiGRU)注意力的心跳声分类,论文不仅显示了模型还构建了完整的系统。以前的研究论文总结了以前的研究数据集和预处理应用层显示了
- 显著性检测算法学习阶段论文总结(1)
SH-ZZB
图像处理算法值得参考的显著性算法
因为本人研究方向是显著性检测,也就看了不少的显著性方面的文献。这篇博客是我对之前所看论文中一些较为经典,具有较大参考价值的论文的一个集中整理,也算是对自己学习过程的一个总结。1.GlobalContrastbasedSalientRegionDetection,Ming-mingCheng(CVPR2011)程明明的这篇基于全局颜色对比的显著性检测的论文我在上篇博客中详细介绍过,文中主要阐述了两种
- ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOSITION 论文总结
yrhzmu
低照度图像恢复图像处理
目录一、论文主要内容二、RRDNet的工作流程三、损失函数1、Retinex重建损失2、纹理增强损失3、光照指导的噪声损失4、损失函数公式三、实验结果四、代码复现结果一、论文主要内容1、提出了RRDNet,不需要提前训练,相反,权重更新依赖于输入单张图像的内部优化,这样确保了在不同场景和多种光照条件下的泛化能力(generalizationcapability)。2、RRDNet有三个分支,可以预
- 闵帆老师《论文写作》学习心得
oh panda
笔记
上周已经把闵帆老师的《论文写作》这门课学习完了,以下对学习到的内容进行一些总结。文章目录一、论文的基本概念二、论文写作中慎用的单词与短语三、如何写出好的英文句子四、规范使用符号与数学公式五、论文题目六、摘要七、引言八、文献综述九、算法伪代码十、实验十一、结论十二、参考文献的注意事项十三、关于图十四、LaTeX表格十五、如何回复审稿意见十六、会议论文与期刊论文总结一、论文的基本概念1.论文是什么?论
- fastReID论文总结
江小皮不皮
人工智能计算机视觉深度学习fastreidmINP
fastReID论文总结fastReIDReID所面临的挑战提出的背景概念:所谓ReID就是从视频中找出感兴趣的物体(人脸、人体、车辆等)应用场景:存在的问题:当前的很多ReID任务可复用性差,无法快速落地使用解决方式:发布了FastReID,可复用和快速落地fastReID的亮点fastReID的成就训练策略learningratewarm-upBackboneFreezing测试排序方法QEK
- 三维目标检测----CT3D论文分享
twn29004
论文阅读3d深度学习transformer
代码链接paper链接论文总结本文提出了一种目前二阶段的目标检测算法不能很好的提取proposal中的特征。本文提出了一种基于通道层面的self-attention结构来提高网络对于proposal中点的特征的提取能力。下面简单介绍一下网络的处理流程:与传统的二阶段目标检测器一样,首先使用一个backbone提取点样场景的特征,然后使用RPN网络生成proposal。注意,这里生成的proposa
- 【网安AIGC专题10.11】论文1:生成式模型GPT\CodeX填充式模型CodeT5\INCODER+大模型自动程序修复(生成整个修复函数、修复代码填充、单行代码生产、生成的修复代码排序和过滤)
是Yu欸
科研笔记与实践#文本处理与摘要自然语言处理代码复审论文阅读安全大模型chatgptAIGC
论文1:AutomatedProgramRepairintheEraofLargePre-trainedLanguageModels写在最前面论文总结背景知识介绍语言模型双向语言模型单向语言模型自动程序修复(APR)技术发展论文概述模型选择方法生成整个修复函数修复代码填充单行代码生产生成的修复代码排序和过滤实验实验数据集实验结果对比写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt