- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 大规模胰腺癌检测通过非对比增强CT和深度学习| 文献速递-视觉通用模型与疾病诊断
有Li
深度学习人工智能
Title题目Large-scalepancreaticcancerdetectionvianon-contrastCTanddeeplearning大规模胰腺癌检测通过非对比增强CT和深度学习01文献速递介绍胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,通常在晚期和不可手术的阶段被检测到。早期或偶然发现与延长生存期相关,但使用单一测试筛查无症状个体的PDAC仍然不可行,因为假阳性的潜在危害和低
- 文献速递:深度学习乳腺癌诊断---使用深度学习改善乳腺癌诊断的MRI技术
有Li
深度学习人工智能
Title题目ImprovingbreastcancerdiagnosticswithdeeplearningforMRI使用深度学习改善乳腺癌诊断的MRI技术01文献速递介绍乳腺磁共振成像(MRI)是一种高度敏感的检测乳腺癌的方式,报道的敏感性超过80%。传统上,其在筛查中的使用被限制在高风险患者身上。新的证据支持在中等风险和普通风险女性中进行筛查MRI的作用4)。诊断MRI对于额外的指示也很有
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- SAE层、BPNN层结合的深度学习模型
sbc-study
深度学习人工智能机器学习
EarlyFaultDetectionofMachineToolsBasedonDeepLearningandDynamicIdentificationBoLuo,HaotingWang,HongqiLiu,BinLi,andFangyuPengIEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.66,NO.1,JANUARY2019一SAE层(栈式自编码器层-
- 多标签分类的激活函数和损失函数
通过幸福的路唯有奋斗
深度学习
刚入门DeepLearning不久,前一段时间一直在学习cifar10的分类,突然最近要做一个多标签的任务,突然有点不知所措,不知从何下手了。于是查阅了一些资料,了解一下多分类任务与多标签分类任务的异同。-多分类任务:只有一个标签,但是标签有多种类别。-多标签分类任务:一条数据可能有一个或者多个标签,比如一个病人的眼底检测报告,它可能被标记患有糖尿病、高血压多个标签。多标签分类任务的特点:1.类别
- Deep Lake 简介
DeepLake简介DeepLake是由Activeloop开发的一款开源深度学习数据湖(DeepLearningDataLake),专为人工智能时代设计,旨在解决深度学习项目中数据管理的复杂性与低效问题。核心特点特性说明多模态数据支持支持图像、视频、音频、文本、点云等多种数据类型,适用于各类AI场景。张量存储数据以张量格式存储,兼容主流深度学习框架(如PyTorch、TensorFlow)。数据
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- aws flask_如何将屏幕日志记录添加到Flask应用程序并将其部署在AWS Elastic Beanstalk上...
weixin_26742939
javapythonlinuxmysqlleetcode
awsflaskAttheendof2019Deeplearning.aireportedthatonly22%ofcompaniesthatusemachinelearningactuallydeployedamodel.Mostcompaniesdonotgetbeyondaproofofconcept,oftenbymeansofamodelinaJupyterNotebooks.Asare
- GeoTorchAI 项目使用与配置指南
尤贝升Sherman
GeoTorchAI项目使用与配置指南GeoTorchAIGeoTorchAI:AFrameworkforTrainingandUsingSpatiotemporalDeepLearningModelsatScale项目地址:https://gitcode.com/gh_mirrors/ge/GeoTorchAI1.项目目录结构及介绍GeoTorchAI的目录结构如下:GeoTorchAI/├──
- Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进
陆或愉
Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进Dive-into-DL-PyTorch本项目将《动手学深度学习》(DiveintoDeepLearning)原书中的MXNet实现改为PyTorch实现。项目地址:https://gitcode.com/gh_mirrors/di/Dive-into-DL-PyTorch引言目标检测是计算机视觉领域的核心任务之一
- Java 人工智能应用:使用 DL4J 实现深度学习算法
向哆哆
Java入门到精通人工智能java深度学习
Java人工智能应用:使用DL4J实现深度学习算法在当今数字化时代,人工智能技术正以前所未有的速度改变着各个行业的发展格局。而Java作为一种广泛应用于企业级开发的编程语言,在人工智能领域也发挥着越来越重要的作用。其中,深度学习作为人工智能的核心技术之一,为解决复杂问题提供了强大的能力。本篇文章将深入探讨如何使用Java深度学习库DL4J(Deeplearning4j)实现深度学习算法,助力开发者
- 学习笔记--Structural-RNN: Deep Learning on Spatio-Temporal Graphs
Giving_Kore
CV论文笔记StructuralRNNRNNCVspatiotemporal
论文链接:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jain_Structural-RNN_Deep_Learning_CVPR_2016_paper.pdf此为原创笔记,如需转载请注明Structural-RNN:DeepLearningonSpatio-TemporalGraphs [–AsheshJai
- 《Transformer如何进行图像分类:从新手到入门》
机器学习司猫白
深度学习transformer分类深度学习图像分类
引言如果你对人工智能(AI)或深度学习(DeepLearning)感兴趣,可能听说过“Transformer”这个词。它最初在自然语言处理(NLP)领域大放异彩,比如在翻译、聊天机器人和文本生成中表现出色。但你知道吗?Transformer不仅能处理文字,还能用来分类图像!这听起来是不是有点神奇?别担心,这篇博客将带你从零开始,了解Transformer的基本概念、它如何被应用到图像分类,以及通过
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 神经网络入门书籍推荐,神经网络的书籍推荐
阳阳2013哈哈
物联网神经网络深度学习机器学习
有什么适合深度学习的书单吗?。12本最好的深度学习书籍:1.用Scikit-Learn和TensorFlow进行机器学习2.深度学习(DeepLearning)3.DeepLearningfortheLayman(为外行准备的深度学习)4.建立你自己的神经网络(MakeYourOwnNeuralNetwork)5.深度学习初学者(DeepLearningforBeginners)6.神经网络和深度
- 探秘 Alfred:一款强大的 macOS 生产力工具
宋韵庚
探秘Alfred:一款强大的macOS生产力工具alfredalfred-py:Adeeplearningutilitylibraryfor**human**,moredetailabouttheusageoflibto:https://zhuanlan.zhihu.com/p/341446046项目地址:https://gitcode.com/gh_mirrors/al/alfred在程序员和效
- 2025转行指南:Java开发工程师转AI工程师,附全网最详细的大模型学习路线
AI小白熊
java人工智能学习大模型程序员ai开发语言
关键要点研究表明,Java开发工程师转AI工程师需要学习数学、Python编程、机器学习和深度学习等技能。证据显示,掌握TensorFlow、PyTorch等框架和云部署技术(如Aliyun、AWS)也很重要。学习资源包括Coursera的免费课程、DiveintoDeepLearning书和国内平台如PaddlePaddle。技能和学习资料概述所需技能要从Java开发工程师成功转型为AI工程师,
- SuperVINS:实时视觉-惯性SLAM框架,应对挑战性成像条件
秋泉律Samson
SuperVINS:实时视觉-惯性SLAM框架,应对挑战性成像条件SuperVINSAreal-timevisual-inertialSLAMframeworkforchallengingimagingconditions(integrateddeeplearningfeatures)项目地址:https://gitcode.com/gh_mirrors/su/SuperVINS项目介绍Super
- 探秘空间基因表达的 “地形图”:GASTON 算法重磅来袭!
阔跃生物
阔跃云阔跃AI阔跃生物算法阔跃生物阔跃云阔跃AI人工智能
在生命科学的浩瀚宇宙中,空间基因表达模式的解析一直是科研人员苦苦追寻的目标。近期,一篇发表于《NatureMethods》的重磅研究《Mappingthetopographyofspatialgeneexpressionwithinterpretabledeeplearning》为我们点亮了新的希望。该研究由PrincetonUniversity的BenjaminJ.Raphael团队主导,历
- 神经网络在MATLAB中是如何实现的?
tyatyatya
MATLAB教程神经网络matlab人工智能
文章目录前言MATLAB环境配置一、图形化界面工具(适合快速上手)1.NeuralNetworkToolboxGUI2.DeepLearningToolboxGUI二、编程实现(适合高级定制)1.基础神经网络(前馈网络)2.深度学习(CNN、RNN)3.循环神经网络(RNN)三、关键步骤总结数据准备:网络构建:模型训练:模型评估与部署:四、常用函数与工具箱前言在MATLAB中实现神经网络主要有两种
- AI人工智能深度学习算法:在流体动力学中的应用
AI天才研究院
计算AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
欢迎您的阅读,接下来我将为您一步步分析:AI人工智能深度学习算法在流体动力学中的应用。让我们通过多个角度来探讨这个问题。文章目录AI人工智能深度学习算法:在流体动力学中的应用AIDeepLearningAlgorithms:ApplicationsinFluidDynamics1.理解深度学习和流体动力学的基本概念1.UnderstandingtheBasicConceptsofDeepLearn
- Generative Pre-trained Transformer
科学禅道
大模型专栏深度学习模型专栏transformer深度学习人工智能
GenerativePre-trainedTransformer(GPT)referstoaclassofdeeplearningmodelsdevelopedbyOpenAI,specificallydesignedfornaturallanguageprocessingtasks.GPTmodelsarebasedonthetransformerarchitectureandarepre-tr
- 从理论到落地,大模型评测体系综合指南
LLM.
人工智能深度学习opencv计算机视觉注意力机制
1956年夏,“人工智能”这一概念被提出。距今已有近70年的发展历史。中国科学院将其划分为六个阶段:起步发展期(1956年—1960s),反思发展期(1960s-1970s),应用发展期(1970s-1980s),低迷发展期(1980s-1990s),稳步发展期(1990s-2010),以及蓬勃发展期(2011-)。真正的大模型历史还要从2006年DeepLearning首次在Science上发表
- 【学习笔记】深度学习:典型应用
瑶光守护者
学习笔记深度学习人工智能计算机视觉语音识别
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RNN)【学习笔记】理解深度学习和机器学习的数学基础:数值
- PyTorchVideo:视频理解研究的深度学习库
虞亚竹Luna
PyTorchVideo:视频理解研究的深度学习库pytorchvideoAdeeplearninglibraryforvideounderstandingresearch.项目地址:https://gitcode.com/gh_mirrors/py/pytorchvideo项目介绍PyTorchVideo是一个专注于视频理解研究的深度学习库。由FacebookResearch开发,PyTorch
- 机器学习 vs 深度学习:深入浅出解析两者的区别
海豹工匠
机器学习深度学习人工智能神经网络卷积神经网络
在当今科技飞速发展的时代,**机器学习(MachineLearning)和深度学习(DeepLearning)**成为了人工智能(AI)领域的热门话题。无论你是技术专家、学生,还是对AI感兴趣的普通读者,理解这两者的区别都是至关重要的。本文将以通俗易懂的方式,深入浅出地解析机器学习与深度学习的区别,帮助你全面掌握这一知识。什么是机器学习?机器学习是人工智能的一个子领域,专注于开发能够从数据中自动学
- 机器学习与深度学习的区别详解
云端.代码农夫CloudFarmer
机器学习深度学习人工智能
机器学习与深度学习的区别详解在数据科学和人工智能领域,机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是两个非常重要的概念。尽管这两个术语常常被提及,并且有时会被混淆,但它们之间有着显著的区别。本文将详细介绍机器学习和深度学习的不同之处,帮助读者更好地理解这两个技术的特点和应用场景。一、基本概念1.机器学习机器学习是一种通过数据训练模型,以便使计算机能够
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比