classmethod DataFrame.
from_dict
(data, orient='columns', dtype=None, columns=None)[source]
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
Parameters: | data : dict
orient : {‘columns’, ‘index’}, default ‘columns’
dtype : dtype, default None
columns : list, default None
|
---|---|
Returns: | pandas.DataFrame |
See also
DataFrame.from_records
DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame
DataFrame
DataFrame object creation using constructor
Examples
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify orient='index'
to create the DataFrame using dictionary keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the ‘index’ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d