- 征程 6 VP简介与单算子实操
自动驾驶算法
1.如何理解VPVP,全称VisionProcess,指UCP中的视觉处理功能模块。Backends,指UCP框架中的可分配处理单元。VP模块主要用于模型的前后处理环节,在地平线统一架构中,多种硬件均已搭载了图像处理的算子,而VP模块将图像处理相关的硬件调用进行了封装,通过设置backend来选择不同的硬件方案(若不指定backend,UCP会自动适配负载更低的处理单元),从而平衡开发板负载。VP
- DCM4CHE图像显示
啸鸢
DCM4CHEEDicom医学影像处理
概述本文主要介绍dicom图像从拿到像素数据到显示到图像的基本过程,通过DCM4CHE获取dicom文件像素数据,通过默认窗宽窗位,显示到java的BufferedImage上,并将BufferedImage保存成jpg到本地有关窗宽窗位的解释和处理方法可以参考:https://blog.csdn.net/songzitea/article/details/8505469通过DCM4CHE获取di
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- MM-RAIT:多模态检索增强生成(RAG)的认知革命
花生糖@
AIGC学习资料库人工智能深度学习机器学习RAGAI知识库
多模态检索增强生成(RAG)领域迎来了一项里程碑式的突破——MM-RAIT框架通过“评估-训练”双轮驱动,显著提升了主流视觉语言模型的RAG性能,增幅达27%至34%。这项技术不仅解决了多模态AI的认知断层问题,还首次赋予机器类似人类的知识处理能力,即“查资料-思逻辑-答精准”的能力。技术双引擎:从能力测绘到认知进化M2RAG:多模态能力的CT扫描仪M2RAG引入了首创的四维评估体系,覆盖图像描述
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- OpenCV-Python实战(1)——OpenCV简介与图像处理基础
数字化转型2025
AI人工智能方向opencvpython图像处理
OpenCV介绍Python安装OpenCV:对于Linux和Windows操作系统,首先需要在shell或cmd中运行以下命令安装NumPy:pipinstallnumpy。然后再安装OpenCV,可以选择仅安装主模块包:pipinstallopencv-python,或者安装完整包(包括主模块和附加模块):pipinstallopencv-contrib-python。OpenCV主要模块:O
- 美颜特效类sdk在智能硬件中的场景应用是怎样的?
Face Beauty美颜SDK
实时音视频美颜sdk视频特效美颜智能硬件实时互动实时音视频
前言:FaceBeauty美颜特效SDK是由前相芯科技员工组建创办的新晋美颜厂商品牌,致力于为用户提供更真实自然的美颜效果,以极致性价比,降低高性能美颜的使用门槛。基于人脸识别和图像渲染技术,为客户提供美颜贴纸、美妆、美体、美发、哈哈镜、手势识别等人像人体特效功能,广泛应用于视频直播、一对一社交、短视频、美颜相机、智能硬件等场景。美颜特效类SDK在智能硬件中的应用场景日益广泛,结合实时图像处理、A
- 【工作记录】python使用总结
星光不负赶路人!
python
1.os库2.xlwt库3.xlrd库4.BeautifulSoup库5.panda库6.json库7.re正则8.ddddocr登录网站的时候,经常输入用户名和密码后会遇到验证码,ddddocr是一款强大的通用开源ocr识别库,具有高效、准确、易用的特点,广泛应用于图像处理和文字识别任务。importddddocrtry:login_page.wait_for_timeout(2000)#等待2
- DeepSeek 3FS 与 JuiceFS:架构与特性比较
运维人工智能
近期,DeepSeek开源了其文件系统Fire-FlyerFileSystem(3FS),使得文件系统这一有着70多年历时的“古老”的技术,又获得了各方的关注。在AI业务中,企业需要处理大量的文本、图像、视频等非结构化数据,还需要应对数据量的爆炸式增长,分布式文件系统因此成为AI训练的关键存储技术。本文旨在通过深入分析3FS的实现机制,并与JuiceFS进行对比,以帮助用户理解两种文件系统的区别及
- OpenCV图像拼接(2)特征查找与图像匹配之基于仿射变换的图像匹配的一个类cv::detail::AffineBestOf2NearestMatcher
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::AffineBestOf2NearestMatcher是OpenCV库中用于实现基于仿射变换的图像匹配的一个类。这个类主要用于在图像拼接流程中,寻找图像间的对应关系,并假设图像间存在仿射变换(即考虑缩放、旋转和平移的变换)。它通过使用“最佳
- VLLM专题(三十五)—多模态数据处理
AI专题精讲
大模型专题系列人工智能
为了在vLLM中实现各种优化,例如分块预填充和前缀缓存,我们使用BaseMultiModalProcessor来提供占位符特征标记(例如)与多模态输入(例如原始输入图像)之间的对应关系,基于HF处理器的输出。以下是BaseMultiModalProcessor的主要特性:提示更新检测HF处理器的主要职责之一是使用占位符标记更新提示。例如:在字符串的开头插入特征占位符标记(例如…,其数量等于特征大小
- 李开复:AI 2.0 时代的价值
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人工智能,AI2.0,价值创造,伦理挑战,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理,AI已经渗透到我们生活的方方面面。李开复,作为一位享誉全球的人工智能专家,在《AI2.0时代的价值》一文中,深刻地探讨了AI2.0时代带来的机遇与挑战,以及AI如何为人类创造价值。AI1.0时代主要集中在规则驱动的系统,例如围棋、象棋等游戏的AI。而AI2.0时代则
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- OpenCV多分辨率模板匹配与容错优化实战指南
追寻向上
opencv人工智能计算机视觉
第一章:问题背景与挑战1.1传统模板匹配的局限性模板匹配(TemplateMatching)是计算机视觉中基础且广泛使用的技术,其核心思想是通过滑动窗口在目标图像中寻找与模板最相似的位置。然而,传统方法(如OpenCV的cv2.matchTemplate)在实际应用中存在以下问题:尺寸敏感性当目标的实际尺寸与模板不一致时,匹配结果会严重偏离。例如,在工业检测中,摄像头与物体的距离变化会导致目标缩放
- turfijs合并相邻或者相交多边形
库库的写代码
arcgis
文章目录前言合并多边形一、安装turf二、加载高德三、绘制图形四、计算交点六、绘制图像七、效果前言合并多边形一、安装turfnpmi@turf/turf二、加载高德AMapLoader.load({key:"你的key",//申请好的Web端开发者Key,首次调用load时必填version:"2.0",//指定要加载的JSAPI的版本,缺省时默认为1.4.15plugins:["AMap.Pol
- 【ArcGIS】从DEM中提取经纬度
榴女士
arcgis
老师给了我一幅DEM图像,由于后面的处理过程中需要该区域对应的SRTM1DEM数据,所以我必须先知道这幅DEM是哪个区域。由于没有其他的信息,我就不知道该怎么办了。后面查了一些网页,找到的解决办法是:通过DEM提取经纬度,这样就可以知道DEM的区域。把提取经纬度的过程记录下来,以防后面又忘记了。1、栅格转点【转换-由栅格转出-栅格转点】;2、打开点图层属性表,新建两个字段“lon”&“lat”;3
- SciPy 安装指南
froginwe11
开发语言
SciPy安装指南引言SciPy是一个开源的Python科学计算库,它基于NumPy库,提供了大量的科学和工程计算功能。SciPy包含了用于优化、线性代数、积分、插值、信号和图像处理、特殊函数、统计分析、离散傅里叶变换等功能的模块。本文将详细介绍如何在您的系统上安装SciPy。安装前的准备在开始安装SciPy之前,请确保您的系统满足以下条件:您已安装Python,且版本在3.5或更高。您已安装pi
- OpenCV计算摄影学(23)艺术化风格化处理函数stylization()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述风格化的目的是生成不以照片写实为目标的多种多样数字图像效果。边缘感知滤波器是风格化处理的理想选择,因为它们能够弱化低对比度区域,同时保留或增强高对比度特征。该函数通过艺术化风格化处理,将输入图像转换为具有油画或卡通风格的图像,增强边缘和纹理的对比度,同时保留主要颜
- 【新生必会】30个较难Python脚本,建议收藏。
.Boss.
信息可视化python人工智能算法开发语言机器学习
本篇较难,建议优先学习上篇;20个硬核Python脚本-CSDN博客接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!目录21、数据库连接-SQLite22、图像处理-Pillow23、图形界面-Tkinter24、文本生成-Faker25、加密和解密-cryptography26、Sock
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- 答题卡图像识别 需求分析、市场分析和技术实现
weixin_34037977
人工智能开发工具json
答题卡图像识别需求分析、市场分析和技术实现一、需求分析一、以接口的方式开发此需求:1:接收图片以上传的方式把图片发送到接口。2:识别图片接口接收到图片后,进行图像识别。3:返回数据返回识别后的JSON格式数据。二、答题卡图片识别的具体要求:图片是通过手机、相机、扫描仪等设备拍照而来,其中手机、相机拍出的照片会出现像素低、图像不正、聚焦不清楚等问题;1:图片只要是人眼能看清楚的即可完成识别;2:80
- 图像分割基础:使用Python和scikit-image库
0dayNu1L
机器学习项目实战python人工智能机器学习
大家好,今天我们将一起探讨图像分割的基础知识,并使用Python编程语言以及scikit-image库来实现一个简单的图像分割示例。图像分割是图像处理中的一项重要技术,它允许我们将图像划分为多个部分或对象,这对于图像分析和计算机视觉任务至关重要。0dayNu1L-CSDN博客目录一、环境准备二、图像分割示例1.导入必要的库2.读取并显示图像3.创建标签数组并进行阈值分割4.使用颜色表示标签三、结果
- Python库 - skimage
司南锤
PYTHON库python开发语言
skimage是scikit-image的缩写,是一个用于图像处理的Python库。提供了丰富的图像处理功能,包括图像滤波、边缘检测、形态学操作、特征提取、图像分割等。skimage是基于NumPy数组构建的,因此可以与NumPy和其他科学计算库(如scipy和matplotlib)无缝集成。安装可以使用pip来安装skimage:pipinstallscikit-image主要模块skimage
- scikit-image(Scikit-image 是用于图像处理的 Python 包,使用原生的 NumPy 数组作为图像对象)
Clark-dj
图像处理pythonnumpy
Scikitimage中文开发手册-开发者手册-腾讯云开发者社区-腾讯云昨天搜索一个函数时无意间发现这个网站,今天来学习一下,仅作学习笔记。measureskimage.measure.approximate_polygon(coords,...)近似具有指定公差的多边形链。skimage.measure.block_reduce(image,block_size)通过对局部块应用函数来下采样图像
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- 差异中寻找共识:浅析中美欧AIGC服务商的标识义务
人工智能
2025年1月7日,西藏日喀则地震中一张被广泛传播的图片“被压在废墟下的小男孩”被证明是AI合成图片,[1]这随即引发了社会对于人工智能生成物(ArtificialIntelligenceGeneratedContent,以下简称“AIGC”)的广泛讨论。随着AI大模型生成逼真图像、音频与视频的能力日益增强,人类作品与AIGC之间的界限愈发模糊。如不加以管控,则会产生“真相侵蚀”(TruthDec
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C