论文主要是面向真实噪声图像去噪,raw 或 sRGB,方法单帧、多帧。会持续更新,也会写一些论文的阅读分析和复现。
1、Unprocessing Images for Learned Raw Denoising(CVPR2019)
论文链接:https://arxiv.org/abs/1811.11127
项目链接:http://timothybrooks.com/tech/unprocessing/
2、Toward Convolutional Blind Denoising of Real Photographs (CBDnet)
论文链接:https://arxiv.org/abs/1807.04686
代码链接:https://github.com/GuoShi28/CBDNet
3、Deep Iterative Down-Up CNN for Image Denoising (DIDN)
论文链接:http://openaccess.thecvf.com/content_CVPRW_2019/papers/NTIRE/Yu_Deep_Iterative_Down-Up_CNN_for_Image_Denoising_CVPRW_2019_paper.pdf
代码链接:https://github.com/SonghyunYu/DIDN
4、Iterative Residual CNNs for Burst Photography Applications
论文链接:https://arxiv.org/abs/1811.12197
项目主页:https://fkokkinos.github.io/deep_burst/
代码链接:https://github.com/cig-skoltech/burst-cvpr-2019
5、Non-Local Recurrent Network for Image Restoration
论文链接:http://papers.nips.cc/paper/7439-non-local-recurrent-network-for-image-restoration.pdf
代码链接:https://github.com/wenbihan/NLRN
6、Burst Denoising with Kernel Prediction Networks
论文链接:https://arxiv.org/abs/1712.02327
项目链接:http://people.eecs.berkeley.edu/~bmild/kpn/
代码链接:https://github.com/google/burst-denoising
代码链接2:https://github.com/Pavelrst/DIP_Project
7、Toward a fast and flexible solution for CNN-based image denoising
论文链接:https://ieeexplore.ieee.org/abstract/document/8365806/
项目主页:http://www.ipol.im/pub/art/2019/231/ffdnet-pytorch.zip
代码链接:(MATLAB)https://github.com/cszn/FFDNet
(Pytorch)http://www.ipol.im/pub/art/2019/231/ffdnet-pytorch.zip
8、Learning deep CNN denoiser prior for image restoration
论文链接:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Learning_Deep_CNN_CVPR_2017_paper.pdf
论文代码:https://github.com/cszn/IRCNN
其他是没有代码的论文
9、Image Blind Denoising With Generative Adversarial Network Based Noise Modeling
论文链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Image_Blind_Denoising_CVPR_2018_paper.pdf
1、ViDeNN: Deep Blind Video Denoising
论文链接:https://arxiv.org/abs/1904.10898
code链接:https://github.com/clausmichele/ViDeNN
2、Model-Blind Video Denoising via Frame-To-Frame Training
论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Ehret_Model-Blind_Video_Denoising_via_Frame-To-Frame_Training_CVPR_2019_paper.pdf
3、Deep Graph Laplacian Regularization for Robust Denoising of Real Images
论文链接:http://openaccess.thecvf.com/content_CVPRW_2019/papers/NTIRE/Zeng_Deep_Graph_Laplacian_Regularization_for_Robust_Denoising_of_Real_Images_CVPRW_2019_paper.pdf
4、Learning Deformable Kernels for Image and Video Denoising
论文链接:https://arxiv.org/abs/1904.06903
1、Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
论文链接:http://www4.comp.polyu.edu.hk/~cslzhang/paper/DnCNN.pdf
代码链接:https://github.com/wbhu/DnCNN-tensorflow
其他代码实现:
(keras)https://github.com/husqin/DnCNN-keras
(pytorch)https://github.com/SaoYan/DnCNN-PyTorch