- indexify开源程序包、适用于数据密集型生成式 AI 应用的实时服务引擎、提取和索引 PDF 文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图谱 RAG 和问答
2301_78755287
pdf数据结构算法深度优先逻辑回归宽度优先开源
一、软件介绍文末提供下载Indexify简化了构建和提供持久的多阶段数据密集型工作流的过程,并将其作为HTTPAPI或Python远程API公开。Indexify是开源核心计算引擎,为Tensorlake的无服务器工作流引擎提供支持,用于处理非结构化数据。Indexify是一个多功能的数据处理框架,适用于各种使用案例,包括:提取和索引PDF文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图
- 【数据挖掘】异构图与同构图
dundunmm
数据挖掘深度学习数据挖掘知识图谱人工智能
在图论(GraphTheory)中,异构图(HeterogeneousGraph)和同构图(HomogeneousGraph)是两种不同的图结构概念,它们的主要区别在于节点和边的类型是否单一。1.异构图(HeterogeneousGraph)定义:异构图是指节点类型和/或边类型不同的图,通常用于建模具有多种实体和关系的复杂系统。例如,在社交网络、知识图谱、生物网络等领域,数据往往包含多个类别的实体
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 《如何建立知识图谱?这些资源和工具助你一臂之力》
知识图谱:解锁高效学习与成长的密码[]()在信息爆炸的时代,我们每天都会接触到海量的知识。从书本、网络文章到各类课程,知识的获取变得前所未有的容易。但你是否有过这样的困扰:学了很多知识,却感觉它们杂乱无章,在需要的时候无法快速调用?这时候,构建个人知识图谱就显得尤为重要。它就像一个私人知识管家,帮你将零散的知识整理得井井有条,让知识真正为你所用,助力你在学习和成长的道路上一路开挂。接下来,就让我们
- 企业知识图谱构建: 整合结构化与非结构化数据
CaritoB
非结构化数据管理知识图谱
随着企业数据的爆炸性增长,如何有效地整合、分析和利用这些数据成为了重要课题。企业知识图谱作为一种先进的知识管理工具,通过将不同来源的结构化和非结构化数据统一在一个语义化的框架中,能够为企业提供全局性视角,提升决策效率和创新能力。本文将探讨如何在企业中构建知识图谱,并有效整合结构化与非结构化数据,为企业提供智能化的数据支持。1.企业知识图谱的基本概念知识图谱是一种语义网络,它通过节点和边的形式,将实
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- 【知识图谱】neo4j安装与配置_社区版_2025(附完整安装软件包)
知识靠谱
知识图谱知识图谱neo4j人工智能
【知识图谱】neo4j-community-5.15.0社区版安装步骤前言所需环境配置1.安装JDK(1)测试一下(2)安装2.配置JDK环境3.安装neo4j4.配置neo4j环境5.测试安装结果前言(经历过各种版本NEO4J,遇见杂七杂八的各种问题,也看过非常多很好的教程,特此来分享一下,为大家排排坑。)所需环境配置环境工具:Windows10+jdk-17.0.7_windows-x64_b
- 解锁网络防御新思维:D3FEND 五大策略如何对抗 ATT&CK
vortex5
网络安全网络安全
D3FEND简介背景介绍2021年6月22日(美国时间),美国MITRE公司正式发布了D3FEND——一个网络安全对策知识图谱。该项目由美国国家安全局(NSA)资助,并由MITRE的国家安全工程中心(NSEC)负责管理和发布,目前版本为0.9.2-BETA-3。作为广为人知的ATT&CK框架的补充,ATT&CK聚焦于攻击者的战术和技术知识库,而长期以来,网络安全领域一直缺乏一个专门针对防御对策的系
- AI驱动的企业学习管理系统
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI、机器学习、深度学习、企业学习管理系统、个性化学习、学习路径推荐、知识图谱1.背景介绍在当今瞬息万变的数字化时代,企业面临着前所未有的挑战和机遇。知识更新速度加快,技术迭代日新月异,员工需要不断学习新技能,提升自身竞争力,才能适应不断变化的市场环境。传统的企业学习管理系统(LearningManagementSystem,LMS)往往以标准化课程和批量学习为主,难以满足员工个性化学习需求,且缺
- 基于问答对的实体识别和意图识别的知识图谱问答推理
风清扬【coder】
自然语言分析处理知识图谱人工智能自然语言处理
问答对数据questionanswer省直医保的参保范围是什么?中央直属、省直属在哈尔滨的机关、事业单位、社会团体及其职工和退休人员。参加省直医保的单位缴费基数如何确定和缴纳?在职职工(以下简称职工)个人月缴费基数按本人上年度月平均工资确定,由单位代扣代缴,用人单位月缴费基数按本单位参保职工个人月缴费基数之和确定。缴费费率:用人单位8%(含生育0.5%)、职工个人2%。缴费方式:用人单位、职工按月
- 借助知识图谱和Llama-Index实现基于大模型的RAG
爱吃牛油果的璐璐
知识图谱llamaoracle语言模型chatgpttransformer人工智能
幻觉是在处理大型语言模型(LLMs)时常见的问题。LLMs生成流畅连贯的文本,但经常产生不准确或不一致的信息。防止LLMs中出现幻觉的一种方法是使用外部知识源,如提供事实信息的数据库或知识图谱。矢量数据库和知识图谱使用不同的方法来存储和表示数据。矢量数据库适合基于相似性的操作,知识图谱旨在捕捉和分析复杂的关系和依赖关系。对于LLM中的幻觉问题,知识图谱是一个比向量数据库更好的解决方案。知识图谱为L
- 基于图论的产业网络知识图谱挖掘与构建
罗伯特之技术屋
智能科学与技术专栏知识图谱人工智能
摘要我国是全球产业规模最大、产业覆盖最全的国家,但受多种因素的影响,发现产业链的堵点断点、识别卡点、寻找代替通路、全面优化产业链势在必行。从数据底座构建、核心知识图谱挖掘、兼容传统产业链知识3个方面,阐述了基于图论的产业网络知识图谱的构建过程,以实现产业优化升级与模拟仿真。分析了产业网络知识图谱的应用场景和优势,并给出了其在集成电路行业的应用案例。关键词:图论;产业图谱;知识网络0引言产业经济是国
- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- 使用 Apache Jena 构建 RDF 数据处理与查询服务
梦落青云
apache知识图谱人工智能
一、引言随着语义网和知识图谱技术的不断发展,RDF(ResourceDescriptionFramework)作为一种用于描述资源的框架,被广泛应用于知识表示和数据集成。ApacheJena是一个功能强大的Java框架,用于处理RDF数据和SPARQL查询。本文将通过一个示例项目,展示如何使用ApacheJena实现RDF数据的加载、查询、推理、插入和更新操作。二、项目概述本项目的目标是使用Apa
- 知识库管理中台架构:数据资产激活与企业效率跃升
Baklib-企业帮助文档
其他
内容概要现代企业知识库管理中台架构的演进已突破传统文档存储范式,转向以智能分类引擎与动态数据治理为核心的认知计算体系。基于AI驱动的语义解析技术与分布式大数据处理框架,该架构实现了非结构化数据的多模态特征提取与知识图谱映射。其中,Baklib在数字体验平台(DXP)领域展现的跨系统整合能力,通过API接口标准化设计打通了CRM、ERP等业务系统的数据孤岛,其多级权限管理体系与实时版本控制机制保障了
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- 系统架构设计师备考策略
丰年稻香
系统架构设计师备考指南架构系统架构设计师
一、备考痛点系统架构设计师考试以知识体系庞杂、实践性强著称,官方教材《系统架构设计师教程(第2版)》厚达700余页,若盲目通读耗时费力。根据近三年考情分析,“抓重点+分层突破+实战输出”是高效通关的核心策略。本文将从考试结构拆解、核心知识图谱、三阶段备考计划、高分技巧四大维度,助你实现精准备考。二、考试科目与核心知识领域1.考试科目全景图科目题型分值时间核心能力要求综合知识75道单选题75分150
- DEMF模型赋能多模态图像融合,助力肺癌高效分类
cv君
cv君独家视角AI内幕系列深度学习PET-CT集成分类肺部图像多模态图像融合
目录论文创新点实验设计1.可视化的研究设计2.样本选取和数据处理3.集成分类模型4.实验结果5.可视化结果图表总结可视化知识图谱在肺癌早期筛查中,计算机断层扫描(CT)和正电子发射断层扫描(PET)作为两种关键的影像学手段,分别提供了丰富的解剖结构信息和代谢活动信息。然而,单一模态的影像数据在诊断精准度上往往存在瓶颈,难以全面揭示病变特征。因此,如何将多模态影像数据有机融合,以提升诊断效能,已成为
- 开源 AI 模型助力“智能提取“提取全攻略
黑金IT
AI智能知识图谱开源人工智能
在当今数字化浪潮汹涌澎湃的时代,信息如潮水般涌来,从浩如烟海的文本里快速又精准地提取人名,已然成为诸多领域的刚需。无论是让办公软件化身智能助手帮我们高效整理资料,助力大数据分析挖掘隐藏在字里行间的价值,还是赋能智能客服瞬间洞察客户身份,亦或是为构建庞大复杂、互联互通的知识图谱添砖加瓦,人名提取技术都宛如一颗关键的螺丝钉,紧紧铆住各个环节。今天,就带大家深入探寻那些超给力的支持从文本中提取人名的开源
- 超级详细,知识图谱系统的理论详解+部署过程
mosquito_lover1
python开发语言知识图谱
知识图谱系统(KnowledgeGraphSystem)是一种用于表示、存储、查询和推理知识的系统。它通过结构化的方式将现实世界中的实体、概念及其相互关系组织成一个图结构,从而帮助机器理解和处理复杂的知识。知识图谱的核心组成部分实体(Entities):实体是知识图谱中的节点,代表现实世界中的对象或概念。例如,人、地点、组织、事件等。示例:BarackObama、NewYorkCity、Googl
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 内容中台重构智能服务:人工智能技术驱动精准决策
清风徐徐de来
其他
内容概要现代企业数字化转型进程中,内容中台与人工智能技术的深度融合正在重构智能服务的基础架构。通过整合自然语言处理、知识图谱构建与深度学习算法三大技术模块,该架构实现了从数据采集到决策输出的全链路智能化。在数据层,系统可对接CRM、ERP等企业软件,通过标准化接口完成多源异构数据的实时清洗与结构化处理,例如某金融科技平台利用动态知识图谱技术,将分散的客户行为数据与市场情报进行语义关联,形成可解释的
- spring boot基于知识图谱的阿克苏市旅游管理系统python-计算机毕业设计
QQ1963288475
springboot知识图谱旅游pythonvue.jsdjangoflask
目录功能和技术介绍具体实现截图开发核心技术:开发环境开发步骤编译运行核心代码部分展示系统设计详细视频演示可行性论证软件测试源码获取功能和技术介绍该系统基于浏览器的方式进行访问,采用springboot集成快速开发框架,前端使用vue方式,基于es5的语法,开发工具IntelliJIDEAx64,因为该开发工具,内嵌了Tomcat服务运行机制,可不用单独下载Tomcatserver服务器。由于考虑到
- 知识图谱构建概念、工具、实例调研
熟悉的黑曼巴
知识图谱人工智能
一、知识图谱的概念知识图谱(Knowledgegraph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网络),其最初理想是把基于文本链接的万维网落转化为基于
- FOKS-TROT: 一个高效、易用的全功能开源知识图谱生成工具
柳旖岭
FOKS-TROT:一个高效、易用的全功能开源知识图谱生成工具项目简介FOKS-TROT是一个基于Python的全功能开源知识图谱生成工具,旨在帮助研究人员和开发者快速构建具有丰富信息的知识图谱。该项目由hkx3upper在GitCode上开发并维护。通过FOKS-TROT,您可以轻松地将各种数据源(如文本文件、数据库、API)转换为结构化的知识图谱,并对其进行可视化分析和机器学习任务。此外,该工
- LLM与知识图谱融合:智能运维知识库构建
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,IT运维管理面临着越来越大的挑战。海量的设备、复杂的网络环境、日益增长的数据量,使得传统的运维方式难以满足需求。为了提高运维效率和质量,智能运维应运而生。智能运维的核心是将人工智能技术应用于运维领域,通过机器学习、深度学习等算法,实现自动化、智能化的运维管理。其中,大语言模型(LLM)和知识图谱是两个重要的技术方向。LLM能够理解和生成自然语言,可以用于构建智能
- 知识图谱:【知识图谱基础理论(八)】——知识更新
J_Xiong0117
python基础理论自然语言处理知识图谱人工智能自然语言处理
从逻辑上看,知识库的更新包括概念层的更新和数据层的更新。更新的两种方式:数据驱动下的全面更新增量更新
- 知识图谱的作用及其更新方式
甜瓜瓜哥
面试人工智能知识图谱人工智能
知识图谱的作用及其更新方式简介作用1.语义理解和推理2.信息检索3.推荐系统4.自然语言处理5.智能对话系统更新知识图谱的过程1.数据收集2.数据清洗和处理3.知识抽取4.知识融合5.验证和评估6.部署和应用总结简介知识图谱是一种以图形结构表示知识的方法,它包含了实体(如人物、地点、事物)以及它们之间的关系。知识图谱可以用于帮助计算机理解和处理自然语言,进行信息检索,进行推荐系统等多种应用。作用1
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置