Deep Learning for Face Anti-Spoofing_ An End-to-End Approach

Deep Learning for Face Anti-Spoofing: An End-to-End Approach

标签: anti-spoofing


论文出处: IEEE 2017

本文提出的方法

本文提出的是一种端到端的CNN架构,因为以前提出的方法,即使是基于CNN的,但是只是把CNN作为了一种特征提取器,而之后再把特征使用SVM进行分类,而本文提出的方案,是一种端到端的方案,末端接了全连接并且使用softmax进行分类。并且给出了一些网络调节的小技巧比如50RS-30SeC-1E等,这些方法如果将来我要是做基于CNN的则可以参考。

Deep Learning for Face Anti-Spoofing_ An End-to-End Approach_第1张图片

网络是VGG以及两个基于VGG的延伸网络,而对于数据的预处理,只是先把人脸给提取出来,并没有做其他处理。
除此之外,本文给出了很多种结果比较方法,比如top-1 percent accuracy或者accuracy using threshold-operation等,并且与其他方案做了比较。发现还是有所提升。

收获

1、一种端到端的结构进行欺诈检测

金句: The remarkable success of Convolutional Neural Networks
(CNN) [8] in ImageNet [6] competition has attracted a multitude of researchers in the computer vision community to
investigate its potential latent capabilities in attaining such
a high performance.

参考文献重点摘录可作为以后读

其他CNN方法
[20] D. Gragnaniello, C. Sansone, G. Poggi, and L. Verdoliva, “Biometric
spoofing detection by a domain-aware convolutional neural network,” in
Signal-Image Technology & Internet-Based Systems (SITIS), 2016 12th
International Conference on. IEEE, 2016, pp. 193–198.
[21] A. Alotaibi and A. Mahmood, “Deep face liveness detection based on
nonlinear diffusion using convolution neural network,” Signal, Image
and Video Processing, pp. 1–8, 2016.
[22] ——, “Enhancing computer vision to detect face spoofing attack utilizing a single frame from a replay video attack using deep learning,”
in Optoelectronics and Image Processing (ICOIP), 2016 International
Conference on. IEEE, 2016, pp. 1–5.
[23] J. Yang, Z. Lei, and S. Z. Li, “Learn convolutional neural network for
face anti-spoofing,” arXiv preprint arXiv:1408.5601, 2014.
[24] L. Li, X. Feng, Z. Boulkenafet, Z. Xia, M. Li, and A. Hadid, “An original
face anti-spoofing approach using partial convolutional neural network,”
in Image Processing Theory Tools and Applications (IPTA), 2016 6th
International Conference on. IEEE, 2016, pp. 1–6

你可能感兴趣的:(anti-spoofing,论文阅读)