利用Python实现高斯混合模型(GMM)

前言

之前将网易公开课上吴恩达机器学习视频中高斯混合模型(GMM)及其EM算法反反复复看了几遍之后并将所有公式重新推导了一遍,现在利用Python进行手写进一步加深理解。关于吴恩达机器学习中相关讲义请移步:
斯坦福机器学习笔记(七)——高斯混合模型与EM算法。
上述博客的PDF文件下载请移步:GMM与EM算法


Python代码

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time    : 2018/7/19 10:17
# @Author  : DaiPuwei
# @FileName: GMM.py
# @Software: PyCharm
# @E-mail  :[email protected]
# @Blog    :https://blog.csdn.net/qq_30091945

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import Normalizer
from sklearn.metrics import accuracy_score

class GMM:
    def __init__(self,Data,K,weights = None,means = None,covars = None):
        """
        这是GMM(高斯混合模型)类的构造函数
        :param Data: 训练数据
        :param K: 高斯分布的个数
        :param weigths: 每个高斯分布的初始概率(权重)
        :param means: 高斯分布的均值向量
        :param covars: 高斯分布的协方差矩阵集合
        """
        self.Data = Data
        self.K = K
        if weights is not None:
            self.weights = weights
        else:
            self.weights  = np.random.rand(self.K)
            self.weights /= np.sum(self.weights)        # 归一化
        col = np.shape(self.Data)[1]
        if means is not None:
            self.means = means
        else:
            self.means = []
            for i in range(self.K):
                mean = np.random.rand(col)
                #mean = mean / np.sum(mean)        # 归一化
                self.means.append(mean)
        if covars is not None:
            self.covars = covars
        else:
            self.covars  = []
            for i in range(self.K):
                cov = np.random.rand(col,col)
                #cov = cov / np.sum(cov)                    # 归一化
                self.covars.append(cov)                     # cov是np.array,但是self.covars是list

    def Gaussian(self,x,mean,cov):
        """
        这是自定义的高斯分布概率密度函数
        :param x: 输入数据
        :param mean: 均值数组
        :param cov: 协方差矩阵
        :return: x的概率
        """
        dim = np.shape(cov)[0]
        # cov的行列式为零时的措施
        covdet = np.linalg.det(cov + np.eye(dim) * 0.001)
        covinv = np.linalg.inv(cov + np.eye(dim) * 0.001)
        xdiff = (x - mean).reshape((1,dim))
        # 概率密度
        prob = 1.0/(np.power(np.power(2*np.pi,dim)*np.abs(covdet),0.5))*\
               np.exp(-0.5*xdiff.dot(covinv).dot(xdiff.T))[0][0]
        return prob

    def GMM_EM(self):
        """
        这是利用EM算法进行优化GMM参数的函数
        :return: 返回各组数据的属于每个分类的概率
        """
        loglikelyhood = 0
        oldloglikelyhood = 1
        len,dim = np.shape(self.Data)
        # gamma表示第n个样本属于第k个混合高斯的概率
        gammas = [np.zeros(self.K) for i in range(len)]
        while np.abs(loglikelyhood-oldloglikelyhood) > 0.00000001:
            oldloglikelyhood = loglikelyhood
            # E-step
            for n in range(len):
                # respons是GMM的EM算法中的权重w,即后验概率
                respons = [self.weights[k] * self.Gaussian(self.Data[n], self.means[k], self.covars[k])
                                                    for k in range(self.K)]
                respons = np.array(respons)
                sum_respons = np.sum(respons)
                gammas[n] = respons/sum_respons
            # M-step
            for k in range(self.K):
                #nk表示N个样本中有多少属于第k个高斯
                nk = np.sum([gammas[n][k] for n in range(len)])
                # 更新每个高斯分布的概率
                self.weights[k] = 1.0 * nk / len
                # 更新高斯分布的均值
                self.means[k] = (1.0/nk) * np.sum([gammas[n][k] * self.Data[n] for n in range(len)], axis=0)
                xdiffs = self.Data - self.means[k]
                # 更新高斯分布的协方差矩阵
                self.covars[k] = (1.0/nk)*np.sum([gammas[n][k]*xdiffs[n].reshape((dim,1)).dot(xdiffs[n].reshape((1,dim))) for n in range(len)],axis=0)
            loglikelyhood = []
            for n in range(len):
                tmp = [np.sum(self.weights[k]*self.Gaussian(self.Data[n],self.means[k],self.covars[k])) for k in range(self.K)]
                tmp = np.log(np.array(tmp))
                loglikelyhood.append(list(tmp))
            loglikelyhood = np.sum(loglikelyhood)
        for i in range(len):
            gammas[i] = gammas[i]/np.sum(gammas[i])
        self.posibility = gammas
        self.prediction = [np.argmax(gammas[i]) for i in range(len)]

def run_main():
    """
        这是主函数
    """
    # 导入Iris数据集
    iris = load_iris()
    label = np.array(iris.target)
    data = np.array(iris.data)
    print("Iris数据集的标签:\n",label)

    # 对数据进行预处理
    data = Normalizer().fit_transform(data)

    # 解决画图是的中文乱码问题
    mpl.rcParams['font.sans-serif'] = [u'simHei']
    mpl.rcParams['axes.unicode_minus'] = False

    # 数据可视化
    plt.scatter(data[:,0],data[:,1],c = label)
    plt.title("Iris数据集显示")
    plt.show()

    # GMM模型
    K = 3
    gmm = GMM(data,K)
    gmm.GMM_EM()
    y_pre = gmm.prediction
    print("GMM预测结果:\n",y_pre)
    print("GMM正确率为:\n",accuracy_score(label,y_pre))
    plt.scatter(data[:, 0], data[:, 1], c=y_pre)
    plt.title("GMM结果显示")
    plt.show()


if __name__ == '__main__':
    run_main()

结果显示

利用Python实现高斯混合模型(GMM)_第1张图片
利用Python实现高斯混合模型(GMM)_第2张图片
利用Python实现高斯混合模型(GMM)_第3张图片


sklearn调库结果

利用Python实现高斯混合模型(GMM)_第4张图片
利用Python实现高斯混合模型(GMM)_第5张图片


后言

赤裸裸地验证了一个中科院老师的话:自己写的模子只能用来作为深入理解理论,不能和第三方成型的工具库得出来的结果相比。

你可能感兴趣的:(机器学习,机器学习笔记)