- 时序数据库:数据库领域的未来之星
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库时序数据库ai
时序数据库:数据库领域的未来之星关键词:时序数据库、时间序列数据、物联网、大数据分析、数据库优化、TSDB、实时数据处理摘要:本文深入探讨了时序数据库(TimeSeriesDatabase,TSDB)这一新兴数据库技术。我们将从基本概念入手,分析时序数据库的核心原理和架构设计,详细讲解其特有的数据模型和存储机制。通过实际代码示例展示如何使用主流时序数据库处理时间序列数据,并探讨其在物联网、金融科技
- AI赋能,让办公更智能
enter回车键
人工智能
AI赋能:解锁办公智能化新图景当智能化办公成为企业创造新价值的核心引擎,AI技术正以其强大的学习能力与数据处理能力,成为这场办公变革的“隐形推手”。从流程自动化到决策智能化,从单向执行到双向协作,AI正全方位渗透办公场景的每一个环节,让办公更高效、更精准、更具创造力。AI为办公流程注入“自动化基因”,将人类从机械劳动中彻底解放。传统办公中,员工需花费30%以上的时间处理重复性任务:财务人员逐张核对
- 老码农和你一起学AI:Python系列-Pandas 并行计算
chilavert318
熬之滴水穿石pandaspython
但凡用到科学计算,Pandas几乎是绕不开的工具——它以简洁的API、灵活的数据操作能力成为数据处理的“瑞士军刀”。但随着数据量增长(比如从10万行到1000万行),你可能会发现:原本流畅的代码突然变慢了,一个简单的apply操作要等好几分钟,读取大文件时进度条仿佛凝固了。这不是你的代码有问题,而是原生Pandas的“单线程”基因在多核时代遇到了瓶颈。并行计算正是解决这个问题的核心方案。简单来说,
- 老码农和你一起学AI:Python系列-Pandas大数据处理
chilavert318
熬之滴水穿石pandaspython
今天开始梳理一下pandas的大数据处理,在数据处理领域,Pandas凭借简洁的API和强大的功能成为Python开发者的首选工具。但当面对GB级甚至更大的数据集时,直接读取数据往往会触发“内存不足”的错误——这是因为Pandas默认将数据全部加载到内存中进行处理。此时,分块处理(Out-of-Core)技术就成为解决问题的关键。它通过将大文件拆分为小块,逐块加载并处理,最终整合结果,实现“用有限
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLO深度学习计算机视觉人工智能
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)工业相机使用YoloV8模型实现打架检测工业相机通过YoloV8模型实现打架检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)工业相机使用YoloV8模型实现人脸的检测工业相机通过YoloV8模型实现人脸识别检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLOc#人工智能计算机视觉开发语言
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)工业相机使用YoloV8模型实现人物识别工业相机实现YoloV8模型实现人物识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版))工业相机使用YoloV8模型实现动物分类工业相机实现YoloV8模型实现动物分类的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实
- MySQL(149)如何进行数据清洗?
辞暮尔尔-烟火年年
MySQLmysqlpython数据库
数据清洗在数据处理和分析过程中至关重要,确保数据质量和一致性。以下是一个详细的指南,展示如何使用Java进行数据清洗,包括处理缺失值、重复值、异常值、数据类型转换以及标准化等步骤。一、准备工作确保安装有Java开发环境(JDK)和Maven或Gradle等依赖管理工具。我们将使用ApacheCommonsCSV库来处理CSV文件,并使用Java标准库进行数据清洗操作。二、加载数据首先,我们加载数据
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- CSS 样式设计:背景、字体与边框渐变详解
前端呆猿
css前端
一、CSS背景渐变CSS背景渐变是现代网页设计中常用的技术,可以创建平滑的颜色过渡效果,替代传统的静态背景图像。1.线性渐变(LinearGradient).element{background:linear-gradient(toright,#ff7e5f,#feb47b);}方向参数:toright、toleft、tobottom、totop,或角度如45deg可以添加多个颜色节点:linea
- 微信小程序开发中常用的组件介绍
DTcode7
微信小程序相关微信小程序小程序移动端前端源码
微信小程序开发中常用的组件介绍基础概念组件是什么?为什么要使用组件?常用组件详解视图容器组件view示例一:基础使用示例二:绑定点击事件文本显示组件text示例三:显示动态文本图像显示组件image示例四:显示网络图片表单组件forminput示例五:简单表单导航组件navigator示例六:页面跳转列表组件scroll-view示例七:垂直滚动列表实际开发中的技巧结合实际经验的案例分析案例一:商
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- Matlab 数字图像 第二章 矩阵及其运算
肌肉猛1大序子
matlab矩阵开发语言图像处理
目录2.1矩阵的创建2.1.1直接输入:2.1.2载入外部数据文件2.1.3利用内置函数创建2.2矩阵的寻访2.2.1下标元素访问2.2.2访问单元素2.3矩阵的拼接2.3.1矩阵拼接符[]2.3.2函数2.4矩阵的运算2.4.1加减2.4.2乘除2.4.3乘方2.4.4按位运算2.4.5行列式与秩2.4.6逆与迹2.4.7矩阵的范数(?)2.4.8特征值和特征向量PS纯纯用来记笔记,要是有错随时
- 数字图像处理(三:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
数字图像处理(三)一、(准备工作:咋玩,用什么玩具)图像以矩阵形式存储,那矩阵一变、图像立刻跟着变?1.Python+JupyterNotebook/Lab+库(NumPy,OpenCV,Matplotlib,scikit-image)2.MATLAB+ImageProcessingToolbox3.JavaScript+HTML5Canvas+浏览器4.专业的图像处理软件(带脚本/插件功能)二、
- 微算法科技技术创新,将量子图像LSQb算法与量子加密技术相结合,构建更加安全的量子信息隐藏和传输系统
随着信息技术的发展,数据的安全性变得尤为重要。在传统计算模式下,即便采用复杂的加密算法,也难以完全抵御日益增长的网络攻击威胁。量子计算技术的出现为信息安全带来了新的解决方案。然而,量子图像处理领域仍面临复杂度高、效率低的问题。微算法科技通过将量子图像LSQb算法与量子加密技术相结合,提出了一种全新的信息隐藏和传输方案,旨在构建更加安全高效的数据保护机制。LSQb算法,即量子图像的最小有效量子比特算
- 三篇AAAI顶级论文带你一键搞懂多模态!
关注gongzhonghao【计算机sci论文精选】!拿捏更多顶会顶刊发文资讯随着人工智能技术的飞速发展,多模态学习逐渐成为研究热点。多模态技术能够整合文本、图像、语音等多种模态的信息,为人工智能的应用带来了更丰富的语义理解和更强大的交互能力。此外,多模态技术在视频和语言任务中的应用也取得了显著进展。这些技术不仅提升了模型的性能,还为人工智能在更多领域的应用提供了新的可能性。今天小图给大家精选3篇
- JAVA刷题记录: 专题十五 BFS解决FloodFill算法
用屁屁笑
宽度优先算法
733.图像渲染-力扣(LeetCode)classSolution{int[]dx={0,0,-1,1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];if(color==prev)returnimage;Queueq=newLinkedList
- 14.优化算法之BFS解决FloodFill算法1
muyierfly
算法题算法宽度优先深度优先
0.FloodFill简介dfs:深度优先遍历(红色)bfs:宽度优先遍历1.图像渲染算法原理classSolution{int[]dx={0,0,1,-1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];//统计刚开始的颜⾊if(prev==co
- BFS-FloodFill 算法 解决最短路问题 多源 解决拓扑排序
penguin_bark
#BFS算法宽度优先leetcode
文章目录一、FloodFill算法[733.图像渲染](https://leetcode.cn/problems/flood-fill/description/)2.思路3.代码[200.岛屿数量](https://leetcode.cn/problems/number-of-islands/description/)2.思路3.代码[LCR105.岛屿的最大面积](https://leetcod
- Spring AI-15.Spring AI API
程序员勇哥
人工智能(AI)Java全套教程SpringAI人工智能springjavaSpringAI
SpringAI-15.SpringAIAPISpringAIAPI涵盖了广泛的功能。每个主要功能都在其专门的部分中详细介绍。以下是可用的关键功能概述:简介SpringAIAPI提供跨AI供应商的可移植模型API,适用于聊天、文本转图像、音频转录、文本转语音和嵌入模型。支持同步和流式API选项,同时也支持访问特定于模型的功能。AI模型API支持的模型类型:聊天模型(ChatModel):处理对话交
- Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
zzfive
生成模型论文阅读kotlin开发语言android
论文链接:VisualAutoregressiveModeling:ScalableImageGenerationviaNext-ScalePrediction文章目录简介预测下一个token自回归模型范式分析VAR详解分词实现细节幂律缩放定律零样本泛化能力结论简介本文提出的视觉自回归建模/VAR这种新范式,其将图像的自回归学习重新定义为从粗到细的“下一个尺度预测”或“下一个分辨率预测”,与常规的
- 零基础学习性能测试第一章-性能测试和功能测试的区别
试着
性能测试学习功能测试性能测试零基础
目录零基础学习性能测试:性能测试与功能测试的核心区别一、核心概念对比(本质区别)1.测试目标差异2.测试方法对比3.工作流程差异二、实际工作场景应用指南1.何时使用功能测试?(适用场景)2.何时使用性能测试?(关键场景)3.协同应用模式三、工具链对比与实践1.工具选择矩阵2.工具使用对比(以用户登录为例)3.报告输出差异四、工作场景决策树决策指南:五、协同工作最佳实践1.项目各阶段配合2.协作工作
- 算力网赋能工业互联网:智能调度与安全融合创新
智能计算研究中心
其他
内容概要工业互联网的深化发展正面临数据处理效率与系统安全性的双重挑战,而算力网通过技术融合与资源协同,成为破解这一难题的核心路径。当前,工业场景中设备互联规模持续扩大,实时数据流处理需求激增,传统集中式计算架构在响应速度与能耗控制方面显现瓶颈。算力网通过构建智能调度机制,实现任务优先级动态划分与资源弹性分配,在智能检测、故障预测等场景中,将平均响应延迟降低40%以上。行业观察:Gartner研究显
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- “显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象
步步咏凉天
计算机视觉人工智能
“显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象。它模拟的是人类视觉系统对视觉场景中“显著”区域的感知能力。显著性可以用于图像理解、目标检测、图像压缩、图像分割等多个任务。下面是对显著性在计算机视觉中的几个关键方面的解释:一、显著性检测(SaliencyDetection)显著性检测的目标是预测图像中最能吸引人注意的区域,通常输出一个与输
- 【原生JS教程】第3节:运算符与表达式
全栈前端老曹
原生JS教程与实战前端教程javascript开发语言ecmascript前端
第3课:运算符与表达式引言运算符是JavaScript中用于操作数据的基本工具,表达式则是由变量、常量、运算符等构成的可求值代码片段。掌握运算符的分类和使用方式,是编写逻辑判断、数据处理和复杂计算的基础。通过本节课的学习,你将掌握:JavaScript中常见的运算符类型(算术、比较、逻辑、三元等)运算符的优先级与结合性表达式的基本概念与使用场景常见运算符陷阱与最佳实践本节内容概要✅1.算术运算符(
- CSS实现前端响应式布局
一、响应式布局概述响应式布局的定义与重要性响应式布局是一种能够使网页在不同设备上(如桌面电脑、平板电脑、手机等)都能呈现出良好视觉效果和用户体验的设计方法。它通过使用灵活的布局、可适应的图像和媒体查询等技术,确保网页能够根据设备的屏幕尺寸、分辨率和方向进行自动调整和优化。在当今数字化时代,响应式布局至关重要。随着移动设备的广泛使用,用户越来越多地通过各种设备访问网页。如果网页不能在不同设备上良好地
- 边缘计算物联网关如何优化数据处理流程-天拓四方
职业影评人
边缘计算物联网人工智能
在物联网技术日新月异的今天,数据的产生、传输与处理已成为推动行业智能化转型的关键。边缘计算物联网关,作为这一生态系统中的核心组件,正以其独特的优势,在数据处理效率、实时性、安全性及成本效益等方面展现出非凡的潜力。本文将聚焦于边缘计算物联网关如何优化数据处理流程,深入探讨其技术原理、应用优势及未来发展趋势。一、边缘计算物联网关概述边缘计算物联网关,简而言之,是位于物联网设备边缘,负责数据收集、初步处
- 大数据处理技术:分布式文件系统HDFS
茜茜西西CeCe
hdfshadoop大数据HDFS-JAVA接口文件头歌Java
目录1实验名称:2实验目的3实验内容4实验原理5实验过程或源代码5.1HDFS的基本操作5.2HDFS-JAVA接口之读取文件5.3HDFS-JAVA接口之上传文件5.4HDFS-JAVA接口之删除文件6实验结果6.1HDFS的基本操作6.2HDFS-JAVA接口之读取文件6.3HDFS-JAVA接口之上传文件6.4HDFS-JAVA接口之删除文件1实验名称:分布式文件系统HDFS2实验目的1.理
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数