有不少开发者在学习深度学习框架的时候会开源一些训练好的模型,我们可以使用这些模型来运用到我们自己的项目中。如果使用的是同一个深度学习框架,那就很方便,可以直接使用,但是如果时不同深度学习框架,我们就要对模型转换一下。下面我们就介绍如何把Caffe的模型转换成PaddlePaddle的Fluid模型。
pip install paddlepaddle
http://www.paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/install/install_doc.html#id26
git clone https://github.com/PaddlePaddle/models.git
models
的caffe2fluid
目录。cd models/fluid/image_classification/caffe2fluid/
cd proto/ && wget https://raw.githubusercontent.com/ethereon/caffe-tensorflow/master/kaffe/caffe/caffepb.py
修改刚下载的文件名:
mv caffepb.py caffe_pb2.py
https://gist.github.com/ksimonyan/211839e770f7b538e2d8
首先是获取VGG_ILSVRC_16_layers_deploy.prototxt
网络文件。
cd ../ && wget https://gist.githubusercontent.com/ksimonyan/211839e770f7b538e2d8/raw/ded9363bd93ec0c770134f4e387d8aaaaa2407ce/VGG_ILSVRC_16_layers_deploy.prototxt
其次是获取VGG_ILSVRC_16_layers.caffemodel
权重文件。
wget http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
VGG16.py
是PaddlePaddle定义网络结构的Python文件,VGG16.npy
是网络的权重文件。python convert.py VGG_ILSVRC_16_layers_deploy.prototxt \
--caffemodel VGG_ILSVRC_16_layers.caffemodel \
--data-output-path VGG16.npy \
--code-output-path VGG16.py
在执行过程中会生产以下信息:
register layer[Axpy]
register layer[Flatten]
register layer[ArgMax]
register layer[Reshape]
register layer[ROIPooling]
register layer[PriorBox]
register layer[Permute]
register layer[DetectionOutput]
register layer[Normalize]
register layer[Select]
register layer[Crop]
register layer[Reduction]
------------------------------------------------------------
WARNING: PyCaffe not found!
Falling back to a pure protocol buffer implementation.
* Conversions will be drastically slower.
------------------------------------------------------------
Type Name Param Output
----------------------------------------------------------------------------------------------
Data data -- (10, 3, 224, 224)
Convolution conv1_1 (64, 3, 3, 3) (10, 64, 224, 224)
Convolution conv1_1 (64,) (10, 64, 224, 224)
Convolution conv1_2 (64, 64, 3, 3) (10, 64, 224, 224)
Convolution conv1_2 (64,) (10, 64, 224, 224)
Pooling pool1 -- (10, 64, 112, 112)
Convolution conv2_1 (128, 64, 3, 3) (10, 128, 112, 112)
Convolution conv2_1 (128,) (10, 128, 112, 112)
Convolution conv2_2 (128, 128, 3, 3) (10, 128, 112, 112)
Convolution conv2_2 (128,) (10, 128, 112, 112)
Pooling pool2 -- (10, 128, 56, 56)
Convolution conv3_1 (256, 128, 3, 3) (10, 256, 56, 56)
Convolution conv3_1 (256,) (10, 256, 56, 56)
Convolution conv3_2 (256, 256, 3, 3) (10, 256, 56, 56)
Convolution conv3_2 (256,) (10, 256, 56, 56)
Convolution conv3_3 (256, 256, 3, 3) (10, 256, 56, 56)
Convolution conv3_3 (256,) (10, 256, 56, 56)
Pooling pool3 -- (10, 256, 28, 28)
Convolution conv4_1 (512, 256, 3, 3) (10, 512, 28, 28)
Convolution conv4_1 (512,) (10, 512, 28, 28)
Convolution conv4_2 (512, 512, 3, 3) (10, 512, 28, 28)
Convolution conv4_2 (512,) (10, 512, 28, 28)
Convolution conv4_3 (512, 512, 3, 3) (10, 512, 28, 28)
Convolution conv4_3 (512,) (10, 512, 28, 28)
Pooling pool4 -- (10, 512, 14, 14)
Convolution conv5_1 (512, 512, 3, 3) (10, 512, 14, 14)
Convolution conv5_1 (512,) (10, 512, 14, 14)
Convolution conv5_2 (512, 512, 3, 3) (10, 512, 14, 14)
Convolution conv5_2 (512,) (10, 512, 14, 14)
Convolution conv5_3 (512, 512, 3, 3) (10, 512, 14, 14)
Convolution conv5_3 (512,) (10, 512, 14, 14)
Pooling pool5 -- (10, 512, 7, 7)
InnerProduct fc6 (4096, 25088) (10, 4096)
InnerProduct fc6 (4096,) (10, 4096)
Dropout drop6 -- (10, 4096)
InnerProduct fc7 (4096, 4096) (10, 4096)
InnerProduct fc7 (4096,) (10, 4096)
Dropout drop7 -- (10, 4096)
InnerProduct fc8 (1000, 4096) (10, 1000)
InnerProduct fc8 (1000,) (10, 1000)
Softmax prob -- (10, 1000)
Converting data...
Saving data...
Saving source...
set env variable before using converted model if used custom_layers:
python VGG16.py VGG16.npy ./fluid_models
fluid_models
目录下,一共有两文件,分别是model
和params
,这个跟我们使用paddle.fluid.io.save_inference_model
接口是一样的,接口文档在这里。在下一步我们会使用这个模型文件来预测我们的图片。获得预测模型之后,我们可以使用它来在PaddlePaddle预测图像,首先要编写一个PaddlePaddle的预测程序:
# coding=utf-8
import os
import time
from PIL import Image
import numpy as np
import paddle.v2 as paddle
import paddle.fluid as fluid
def load_image(file):
im = Image.open(file)
im = im.resize((224, 224), Image.ANTIALIAS)
im = np.array(im).astype(np.float32)
# PIL打开图片存储顺序为H(高度),W(宽度),C(通道)。
# PaddlePaddle要求数据顺序为CHW,所以需要转换顺序。
im = im.transpose((2, 0, 1))
# CIFAR训练图片通道顺序为B(蓝),G(绿),R(红),
# 而PIL打开图片默认通道顺序为RGB,因为需要交换通道。
im = im[(2, 1, 0), :, :] # BGR
# 减去均值
mean = [123.68, 116.78, 103.94]
mean = np.array(mean, dtype=np.float32)
mean = mean[:, np.newaxis, np.newaxis]
im -= mean
return im
def infer_one(image_path, use_cuda, model_path, model_filename, params_filename):
# 是否使用GPU
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 生成调试器
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# 加载模型
[inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(model_path, exe, model_filename=model_filename, params_filename=params_filename)
# 获取预测数据
test_datas = [load_image(image_path)]
test_data = np.array(test_datas)
# 开始预测
results = exe.run(inference_program,
feed={feed_target_names[0]: test_data},
fetch_list=fetch_targets)
results = np.argsort(-results[0])
result = results[0][0]
print("infer label is: %d" % result)
if __name__ == '__main__':
image_path = "0b77aba2-9557-11e8-a47a-c8ff285a4317.jpg"
use_cuda = False
model_path = "fluid_models/"
model_filename = "model"
params_filename = "params"
infer_one(image_path, use_cuda, model_path, model_filename, params_filename)
使用上面的程序就是使用转换的模型来预测图片了。要注意训练模型时对图片的处理。