底层的数据结构就是数组,数组元素类型为Object类型,即可以存放所有类型数据。我们对ArrayList类的实例的所有的操作底层都是基于数组的。如图:
public class ArrayList extends AbstractList implements List, RandomAccess, Cloneable, java.io.Serializable
说明:ArrayList继承AbstractList抽象父类,实现了List接口(规定了List的操作规范)、RandomAccess(可随机访问)、Cloneable(可拷贝)、Serializable(可序列化)
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
// 版本号
private static final long serialVersionUID = 8683452581122892189L;
// 缺省容量
private static final int DEFAULT_CAPACITY = 10;
// 空对象数组
private static final Object[] EMPTY_ELEMENTDATA = {};
// 缺省空对象数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
// 元素数组
transient Object[] elementData;
// 实际元素大小,默认为0
private int size;
// 最大数组容量
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
}
以上是ArrayList类的各个属性,类的属性中核心的属性为elementData,类型为Object[],用于存放实际元素,并且被标记为transient,也就意味着在序列化的时候,此字段是不会被序列化的
接下来看看构造方法:
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) { // 初始容量大于0
this.elementData = new Object[initialCapacity]; // 初始化元素数组
} else if (initialCapacity == 0) { // 初始容量为0
this.elementData = EMPTY_ELEMENTDATA; // 为空对象数组
} else { // 初始容量小于0,抛出异常
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
指定elementData数组的大小,不允许初始化大小小于0,否则抛出异常
public ArrayList() {
// 无参构造函数,设置元素数组为空
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
当未指定初始化大小时,会给elementData赋值为空集合
public ArrayList(Collection extends E> c) { // 集合参数构造函数
elementData = c.toArray(); // 转化为数组
if ((size = elementData.length) != 0) { // 参数为非空集合
if (elementData.getClass() != Object[].class) // 是否成功转化为Object类型数组
elementData = Arrays.copyOf(elementData, size, Object[].class); // 不为Object数组的话就进行复制
} else { // 集合大小为空,则设置元素数组为空
this.elementData = EMPTY_ELEMENTDATA;
}
}
当传递的参数为集合类型时,会把集合类型转化为数组类型,并赋值给elementData
接下来看看ArrayList的核心方法:
public boolean add(E e) { // 添加元素
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
在add函数发现还有其他的函数ensureCapacityInternal,此函数可以理解为确保elementData数组有合适的大小。ensureCapacityInternal的具体函数如下:
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { // 判断元素数组是否为空数组
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); // 取较大值
}
ensureExplicitCapacity(minCapacity);
}
在ensureCapacityInternal函数中我们又发现了ensureExplicitCapacity函数,这个函数也是为了确保elemenData数组有合适的大小。ensureExplicitCapacity的具体函数如下:
private void ensureExplicitCapacity(int minCapacity) {
// 结构性修改加1
modCount++;
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
在ensureExplicitCapacity函数我们又发现了grow函数,grow函数才会对数组进行扩容,ensureCapacityInternal、ensureExplicitCapacity都只是过程,最后完成实际扩容操作还是得看grow函数,grow函数的具体函数如下:
private void grow(int minCapacity) {
int oldCapacity = elementData.length; // 旧容量
int newCapacity = oldCapacity + (oldCapacity >> 1); // 新容量为旧容量的1.5倍
if (newCapacity - minCapacity < 0) // 新容量小于参数指定容量,修改新容量
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0) // 新容量大于最大容量
newCapacity = hugeCapacity(minCapacity); // 指定新容量
// 拷贝扩容
elementData = Arrays.copyOf(elementData, newCapacity);
}
正常情况下会扩容1.5倍,特殊情况下(新扩展数组大小已经达到了最大值)则只取最大值
当我们调用add方法时,实际上的函数调用如下:
程序调用add,实际上还会进行一系列调用,可能会调用到grow,grow可能会调用hugeCapacity
下面通过两种方式给出调用add的例子,并分析最后的elementData数组的大小。
示例一:
List lists = new ArrayList();
lists.add(8);
初始化lists大小为0,调用的ArrayList()型构造函数,那么在调用lists.add(8)方法时,下图给出了该程序执行过程和最初与最后的elementData的大小
我们可以看到,在add方法之前开始elementData = {};调用add方法时会继续调用,直至grow,最后elementData的大小变为10,之后再返回到add函数,把8放在elementData[0]中
示例二:
List lists = new ArrayList(6);
lists.add(8);
调用的ArrayList(int)型构造函数,那么elementData被初始化为大小为6的Object数组,在调用add(8)方法时,具体的步骤如下:
在调用add方法之前,elementData的大小已经为6,之后再进行传递,不会进行扩容处理
public E set(int index, E element) {
// 检验索引是否合法
rangeCheck(index);
// 旧值
E oldValue = elementData(index);
// 赋新值
elementData[index] = element;
// 返回旧值
return oldValue;
}
设定指定下标索引的元素值
// 从首开始查找数组里面是否存在指定元素
public int indexOf(Object o) {
if (o == null) { // 查找的元素为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个为空的元素,返回下标
if (elementData[i]==null)
return i;
} else { // 查找的元素不为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个和指定元素相等的元素,返回下标
if (o.equals(elementData[i]))
return i;
}
// 没有找到,返回空
return -1;
}
从头开始查找与指定元素相等的元素,注意,是可以查找null元素的,意味着ArrayList中可以存放null元素的。与此函数对应的lastIndexOf,表示从尾部开始查找
public E get(int index) {
// 检验索引是否合法
rangeCheck(index);
return elementData(index);
}
get函数会检查索引值是否合法(只检查是否大于size,而没有检查是否小于0),值得注意的是,在get函数中存在element函数,element函数用于返回具体的元素,具体函数如下:
E elementData(int index) { return (E) elementData[index]; }
返回的值都经过了向下转型(Object -> E),这些是对我们应用程序屏蔽的小细节
public E remove(int index) {
// 检查索引是否合法
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
// 需要移动的元素的个数
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 赋值为空,有利于进行GC
elementData[--size] = null;
// 返回旧值
return oldValue;
}
remove函数用户移除指定下标的元素,此时会把指定下标到数组末尾的元素向前移动一个单位,并且会把数组最后一个元素设置为null,这样是为了方便之后将整个数组不被使用时,会被GC,可以作为小的技巧使用。
ArrayList有其特殊的应用场景,与LinkedList相对应。其优点是随机读取,缺点是插入元素时需要移动大量元素,效率不太高
总结自DL的BLOG:https://www.cnblogs.com/leesf456/p/5308358.html