虚拟机类加载机制:虚拟机把描述类的数据从class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型。
不像C语言,写好代码后,编译-》链接-》执行;Java语言里,类型的加载和连接过程是在程序运行期间完成的。
虚拟机规范严格规定了有且只有五种情况必须对类进行初始化(加载,验证,准备自动在之前开始)
1、遇到new,getstatic,putstatic,invokestatic这4条字节码指令时,如果类没有进行初始化,则先初始化。这4个字节码常见的出现场景是:使用new关键字实例化对象的时候,读取或设置静态字段(被final修饰,已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
2、反射调用时
3、初始化一个类时,如果其父类还未初始化,则先出发父类初始化。
4、当虚拟机启动时,用户需要指定一个要执行的主类,虚拟机会先初始化这个主类
5、使用JDK7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic/REF_putStatic/REF_invokeStatic的方法句柄,并且这个方法的句柄对应的类没有进行过初始化,则需要先触发对其的初始化。
这五种情况称为对类的主动引用,其他情况称为被动引用。
以下时被动引用的几种情况:
1、对于访问静态字段,只有直接定义这个字段的类才被初始化,因此通过子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。
2、通过数组定义引用类,不会触发此类的初始化。
3、常量在编译阶段会存入调用类的常量池,本质上没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。
类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段。其中准备、验证、解析3个部分统称为连接(Linking)。
加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)。
虚拟机需要完成以下3件事情:
验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
验证阶段大致会完成4个阶段的检验动作:
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。
这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:
public static int value=123;
那变量value在准备阶段过后的初始值为0而不是123.因为这时候尚未开始执行任何java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。
至于“特殊情况”是指:
public static final int value=123;
即当类字段的字段属性是ConstantValue时,会在准备阶段初始化为指定的值,所以标注为final之后,value的值在准备阶段初始化为123而非0.
解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。
类初始化阶段是类加载过程的最后一步,到了初始化阶段,才真正开始执行类中定义的java程序代码。初始化阶段是执行类构造器()方法的过程。
1、
方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块static{}中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。
public class Test
{
static
{
i=0;
System.out.println(i);//这句编译器会报错:Cannot reference a field before it is defined(非法向前应用)
}
static int i=1;
}
2、
方法与实例构造器
方法不同,它不需要显示地调用父类构造器,虚拟机会保证在子类
方法执行之前,父类的
方法方法已经执行完毕。
3、由于父类的
方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。
4、
方法对于类或者接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生产
方法。
5、接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成
方法。但接口与类不同的是,执行接口的
方法不需要先执行父接口的
方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的
方法。
6、虚拟机会保证一个类的
方法在多线程环境中被正确的加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的
方法,其他线程都需要阻塞等待,直到活动线程执行
方法完毕。如果在一个类的
方法中有好事很长的操作,就可能造成多个线程阻塞,在实际应用中这种阻塞往往是隐藏的。
通过一个类的全限定名来获取描述此类的二进制流,执行这个动作的代码模块成为“类加载器”。
两个类只有在同一个类加载器加载的前提下才有意思,否则即使两个类原子相同的Class文件,只要加载它们的加载器不同,那这两个类也是不相等的。
类加载器的分类
对于JVM来说,只存在两种不同的类加载器:启动类加载器(Bootstrap ClassLoader),使用C++实现,是虚拟机自身的一部分。另一种是所有其他的类加载器,使用JAVA实现,独立于JVM,并且全部继承自抽象类java.lang.ClassLoader。
对于JAVA开发人员来讲,会用到下面三种类加载器:
\lib
目录中的,或者被-Xbootclasspath
参数所制定的路径中的,并且是JVM识别的(仅按照文件名识别,如rt.jar,如果名字不符合,即使放在lib目录中也不会被加载),加载到虚拟机内存中,启动类加载器无法被JAVA程序直接引用。sun.misc.Launcher$ExtClassLoader
实现,负责加载\lib\ext
目录中的,或者被java.ext.dirs
系统变量所指定的路径中的所有类库,开发者可以直接使用扩展类加载器。sun.misc.Launcher$AppClassLoader
来实现。由于这个类加载器是ClassLoader中的getSystemClassLoader()
方法的返回值,所以一般称它为系统类加载器。负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。应用程序都是由这三种类加载器互相配合进行加载的,如果有必要,我们还可以加入自定义的类加载器。因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:
1)在执行非置信代码之前,自动验证数字签名。
2)动态地创建符合用户特定需要的定制化构建类。
3)从特定的场所取得java class,例如数据库中和网络中。
这种层次关系称为类加载器的双亲委派模型。我们把每一层上面的类加载器叫做当前层类加载器的父加载器,当然,它们之间的父子关系并不是通过继承关系来实现的,而是使用组合关系来复用父加载器中的代码。
双亲委派模型的工作流程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。
使用双亲委派模型来组织类加载器之间的关系,有一个很明显的好处,就是Java类随着它的类加载器(说白了,就是它所在的目录)一起具备了一种带有优先级的层次关系,这对于保证Java程序的稳定运作很重要。例如,类java.lang.Object类存放在JDK\jre\lib下的rt.jar之中,因此无论是哪个类加载器要加载此类,最终都会委派给启动类加载器进行加载,这边保证了Object类在程序中的各种类加载器中都是同一个类。