CS231n: Convolutional Neural Networks for Visual Recognition Spring 2017 英文课程大纲

This is the syllabus for the Spring 2017 iteration of the course. 

Event Type Date Description Course Materials
Lecture 1 Tuesday 
April 4
Course Introduction 
Computer vision overview 
Historical context 
Course logistics
[slides] [video]
Lecture 2 Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] [video] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]
Lecture 3 Tuesday 
April 11
Loss Functions and Optimization 
Linear classification II
Higher-level representations, image features
Optimization, stochastic gradient descent
[slides] [video] 
[linear classification notes]
[optimization notes]
Lecture 4 Thursday 
April 13
Introduction to Neural Networks 
Backpropagation
Multi-layer Perceptrons
The neural viewpoint
[slides] [video] 
[backprop notes]
[linear backprop example]
[derivatives notes] (optional) 
[Efficient BackProp] (optional)
related: [1], [2], [3] (optional)
Lecture 5 Tuesday 
April 18
Convolutional Neural Networks 
History 
Convolution and pooling 
ConvNets outside vision
[slides] [video] 
ConvNet notes
Lecture 6 Thursday 
April 20
Training Neural Networks, part I 
Activation functions, initialization, dropout, batch normalization
[slides] [video] 
Neural Nets notes 1
Neural Nets notes 2
Neural Nets notes 3
tips/tricks: [1], [2], [3] (optional) 
Deep Learning [Nature] (optional)
A1 Due Thursday 
April 20
Assignment #1 due 
kNN, SVM, SoftMax, two-layer network
[Assignment #1]
Lecture 7 Tuesday 
April 25
Training Neural Networks, part II 
Update rules, ensembles, data augmentation, transfer learning
[slides] [video] 
Neural Nets notes 3
Proposal due Tuesday 
April 25
Couse Project Proposal due [proposal description]
Lecture 8 Thursday 
April 27
Deep Learning Software 
Caffe, Torch, Theano, TensorFlow, Keras, PyTorch, etc
[slides] [video]
Lecture 9 Tuesday 
May 2
CNN Architectures 
AlexNet, VGG, GoogLeNet, ResNet, etc
[slides] [video] 
AlexNet, VGGNet, GoogLeNet, ResNet
Lecture 10 Thursday 
May 4
Recurrent Neural Networks 
RNN, LSTM, GRU 
Language modeling 
Image captioning, visual question answering 
Soft attention
[slides] [video] 
DL book RNN chapter (optional)
min-char-rnn, char-rnn, neuraltalk2
A2 Due Thursday 
May 4
Assignment #2 due 
Neural networks, ConvNets
[Assignment #2]
Midterm Tuesday 
May 9
In-class midterm
Location: Various (not our usual classroom)
 
Lecture 11 Thursday 
May 11
Detection and Segmentation 
Semantic segmentation 
Object detection 
Instance segmentation
[slides] [video] 
Lecture 12 Tuesday 
May 16
Visualizing and Understanding 
Feature visualization and inversion 
Adversarial examples 
DeepDream and style transfer
[slides] [video] 
DeepDream
neural-style
fast-neural-style
Milestone Tuesday 
May 16
Course Project Milestone due  
Lecture 13 Thursday 
May 18
Generative Models 
PixelRNN/CNN 
Variational Autoencoders 
Generative Adversarial Networks
[slides] [video] 
Lecture 14 Tuesday 
May 23
Deep Reinforcement Learning 
Policy gradients, hard attention 
Q-Learning, Actor-Critic
[slides] [video] 
Guest Lecture Thursday 
May 25
Invited Talk: Song Han 
Efficient Methods and Hardware for Deep Learning
[slides] [video] 
A3 Due Friday 
May 26
Assignment #3 due [Assignment #3]
Guest Lecture Tuesday 
May 30
Invited Talk: Ian Goodfellow 
Adversarial Examples and Adversarial Training
[slides] [video] 
Lecture 16 Thursday 
June 1
Student spotlight talks, conclusions [slides]
Poster Due Monday 
June 5
Poster PDF due [poster description]
Poster Presentation Tuesday
June 6
   
Final Project Due Monday 
June 12
Final course project due date [reports]

你可能感兴趣的:(CV)