来源:https://zhuanlan.zhihu.com/p/20604930?refer=quantstory
多股票策略回测时常常遇到问题。
仓位如何分配?
你以为基金经理都是一拍脑袋就等分仓位了吗?
或者玩点玄乎的斐波拉契数列?
OMG,谁说的黄金比例,让我看到你的脑袋(不削才怪)!!
其实,这个问题,好多好多年前马科维茨(Markowitz)我喜爱的小马哥就给出答案——投资组合理论。
根据这个理论,我们可以对多资产的组合配置进行三方面的优化。
1.找到有效前沿。在既定的收益率下使组合的方差最小。
2.找到sharpe最优的组合(收益-风险均衡点)
3.找到风险最小的组合
跟着我,一步两步,轻松实现。
该理论基于用均值和方差来表述组合的优劣的前提。将选取几只股票,用蒙特卡洛模拟初步探究组合的有效前沿。
通过最大Sharpe和最小方差两种优化来找到最优的资产组合配置权重参数。
最后,刻画出可能的分布,两种最优以及组合的有效前沿。
文中的数据API来自量化平台聚宽,在此表示感谢。
原文见【组合管理】——投资组合理论(有效前沿)(包含正态检验部分)
import pandas as pd
import numpy as np
import statsmodels.api as sm #统计运算
import scipy.stats as scs #科学计算
import matplotlib.pyplot as plt #绘图
000413 东旭光电,000063 中兴通讯,002007 华兰生物,000001 平安银行,000002 万科A
并比较一下数据(2015-01-01至2015-12-31)
In[1]:
stock_set = ['000413.XSHE','000063.XSHE','002007.XSHE','000001.XSHE','000002.XSHE']
noa = len(stock_set)
df = get_price(stock_set, start_date = '2015-01-01', end_date ='2015-12-31', 'daily', ['close'])
data = df['close']
#规范化后时序数据
(data/data.ix[0]*100).plot(figsize = (8,5))
Out[1]:
每年252个交易日,用每日收益得到年化收益。计算投资资产的协方差是构建资产组合过程的核心部分。运用pandas内置方法生产协方差矩阵。
In [2]:
returns = np.log(data / data.shift(1))
returns.mean()*252
Out[2]:
000413.XSHE 0.184516
000063.XSHE 0.176790
002007.XSHE 0.309077
000001.XSHE -0.102059
000002.XSHE 0.547441
In [3]:
returns.cov()*252
Out[3]:
由于A股不允许建立空头头寸,所有的权重系数均在0-1之间
In [4]:
weights = np.random.random(noa)
weights /= np.sum(weights)
weights
Out[4]:
array([ 0.37505798, 0.21652754, 0.31590981, 0.06087709, 0.03162758])
In [5]:
np.sum(returns.mean()*weights)*252
Out[5]:
0.21622558669017816
In [6]:
np.dot(weights.T, np.dot(returns.cov()*252,weights))
Out[6]:
0.23595133640121463
In [7]:
np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))
Out[7]:
0.4857482232609962
进行到此,我们最想知道的是给定的一个股票池(证券组合)如何找到风险和收益平衡的位置。
下面通过一次蒙特卡洛模拟,产生大量随机的权重向量,并记录随机组合的预期收益和方差。
In [8]:
port_returns = []
port_variance = []
for p in range(4000):
weights = np.random.random(noa)
weights /=np.sum(weights)
port_returns.append(np.sum(returns.mean()*252*weights))
port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights))))
port_returns = np.array(port_returns)
port_variance = np.array(port_variance)
#无风险利率设定为4%
risk_free = 0.04
plt.figure(figsize = (8,4))
plt.scatter(port_variance, port_returns, c=(port_returns-risk_free)/port_variance, marker = 'o')
plt.grid(True)
plt.xlabel('excepted volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
Out[8]:
建立statistics函数来记录重要的投资组合统计数据(收益,方差和夏普比)
通过对约束最优问题的求解,得到最优解。其中约束是权重总和为1。
In [9]:
def statistics(weights):
weights = np.array(weights)
port_returns = np.sum(returns.mean()*weights)*252
port_variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252,weights)))
return np.array([port_returns, port_variance, port_returns/port_variance])
#最优化投资组合的推导是一个约束最优化问题
import scipy.optimize as sco
#最小化夏普指数的负值
def min_sharpe(weights):
return -statistics(weights)[2]
#约束是所有参数(权重)的总和为1。这可以用minimize函数的约定表达如下
cons = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})
#我们还将参数值(权重)限制在0和1之间。这些值以多个元组组成的一个元组形式提供给最小化函数
bnds = tuple((0,1) for x in range(noa))
#优化函数调用中忽略的唯一输入是起始参数列表(对权重的初始猜测)。我们简单的使用平均分布。
opts = sco.minimize(min_sharpe, noa*[1./noa,], method = 'SLSQP', bounds = bnds, constraints = cons)
opts
Out[9]:
status: 0
success: True
njev: 4
nfev: 28
fun: -1.1623048291871221
x: array([ -3.60840218e-16, 2.24626781e-16, 1.63619563e-01, -2.27085639e-16, 8.36380437e-01])
message: 'Optimization terminated successfully.'
jac: array([ 1.81575805e-01, 5.40387481e-01, 8.18073750e-05, 1.03137662e+00, -1.60038471e-05, 0.00000000e+00])
nit: 4
得到的最优组合权重向量为:
In [10]:
opts['x'].round(3)
Out[10]:
array([-0. , 0. , 0.164, -0. , 0.836])
sharpe最大的组合3个统计数据分别为:
In [11]:
#预期收益率、预期波动率、最优夏普指数
statistics(opts['x']).round(3)
Out[11]:
array([ 0.508, 0.437, 1.162])
接下来,我们通过方差最小来选出最优投资组合。
In [12]:
#但是我们定义一个函数对 方差进行最小化
def min_variance(weights):
return statistics(weights)[1]
optv = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
optv
Out[12]:
status: 0
success: True
njev: 7
nfev: 50
fun: 0.38542969450547221
x: array([ 1.14787640e-01, 3.28089742e-17, 2.09584008e-01, 3.53487044e-01, 3.22141307e-01])
message: 'Optimization terminated successfully.'
jac: array([ 0.3851725 , 0.43591119, 0.3861807 , 0.3849672 , 0.38553924, 0. ])
nit: 7
方差最小的最优组合权重向量及组合的统计数据分别为:
In [13]:
optv['x'].round(3)
Out[13]:
array([ 0.115, 0. , 0.21 , 0.353, 0.322])
In [14]:
#得到的预期收益率、波动率和夏普指数
statistics(optv['x']).round(3)
Out[14]:
array([ 0.226, 0.385, 0.587])
有效前沿有既定的目标收益率下方差最小的投资组合构成。
在最优化时采用两个约束,1.给定目标收益率,2.投资组合权重和为1。
In [15]:
def min_variance(weights):
return statistics(weights)[1]
#在不同目标收益率水平(target_returns)循环时,最小化的一个约束条件会变化。
target_returns = np.linspace(0.0,0.5,50)
target_variance = []
for tar in target_returns:
cons = ({'type':'eq','fun':lambda x:statistics(x)[0]-tar},{'type':'eq','fun':lambda x:np.sum(x)-1})
res = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
target_variance.append(res['fun'])
target_variance = np.array(target_variance)
下面是最优化结果的展示。
叉号:构成的曲线是有效前沿(目标收益率下最优的投资组合)
红星:sharpe最大的投资组合
黄星:方差最小的投资组合
In [16]:
plt.figure(figsize = (8,4))
#圆圈:蒙特卡洛随机产生的组合分布
plt.scatter(port_variance, port_returns, c = port_returns/port_variance,marker = 'o')
#叉号:有效前沿
plt.scatter(target_variance,target_returns, c = target_returns/target_variance, marker = 'x')
#红星:标记最高sharpe组合
plt.plot(statistics(opts['x'])[1], statistics(opts['x'])[0], 'r*', markersize = 15.0)
#黄星:标记最小方差组合
plt.plot(statistics(optv['x'])[1], statistics(optv['x'])[0], 'y*', markersize = 15.0)
plt.grid(True)
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
Out[16]: