opencv机器学习---KNN篇

原文 https://www.cnblogs.com/denny402/p/5033898.html  

knn算法:https://blog.csdn.net/qq_41577045/article/details/80302968

OpenCV 3.3中给出了K-最近邻(KNN)算法的实现,即cv::ml::Knearest类,此类的声明在include/opecv2/ml.hpp文件中,实现在modules/ml/src/knearest.cpp文件中。其中:

(1)、cv::ml::Knearest类:继承自cv::ml::StateModel,而cv::ml::StateModel又继承自cv::Algorithm;

(2)、create函数:为static,new一个KNearestImpl用来创建一个KNearest对象;

(3)、setDefaultK/getDefaultK函数:在预测时,设置/获取的K值;

(4)、setIsClassifier/getIsClassifier函数:设置/获取应用KNN是进行分类还是回归;

(5)、setEmax/getEmax函数:在使用KDTree算法时,设置/获取Emax参数值;

(6)、setAlgorithmType/getAlgorithmType函数:设置/获取KNN算法类型,目前支持两种:brute_force和KDTree;

(7)、findNearest函数:根据输入预测分类/回归结果。

这是一张密密麻麻的手写数字图:图片大小为1000*2000,有0-9的10个数字,每5行为一个数字,总共50行,共有5000个手写数字。在opencv3.0版本中,图片存放位置为

/opencv/sources/samples/data/digits.png

我们首先要做的,就是把这5000个手写数字,一个个截取出来,每个数字块大小为20*20。直接将每个小图块进行序列化,因此最终得到一个5000*400的特征矩阵。样本数为5000,维度为400维。取其中前3000个样本进行训练。

注意:截取的时候,是按列截取。不然取前3000个样本进行训练就会出现后几个数字训练不到。

 


#include "opencv2\opencv.hpp"
#include 
using namespace std;
using namespace cv;
using namespace cv::ml;

int main()
{
	Mat img = imread("digitals.png");
	Mat gray;
	cvtColor(img, gray, CV_BGR2GRAY);
	int b = 20;
	int m = gray.rows / b;   //原图为1000*2000
	int n = gray.cols / b;   //裁剪为5000个20*20的小图块
	Mat data, labels;   //特征矩阵
	for (int i = 0; i < n; i++)
	{
		int offsetCol = i*b; //列上的偏移量
		for (int j = 0; j < m; j++)
		{
			int offsetRow = j*b;  //行上的偏移量
								  //截取20*20的小块
			Mat tmp;
			gray(Range(offsetRow, offsetRow + b), Range(offsetCol, offsetCol + b)).copyTo(tmp);
			data.push_back(tmp.reshape(0, 1));  //序列化后放入特征矩阵
			labels.push_back((int)j / 5);  //对应的标注
		}

	}
	data.convertTo(data, CV_32F); //uchar型转换为cv_32f
	int samplesNum = data.rows;
	int trainNum = 3000;
	Mat trainData, trainLabels;
	trainData = data(Range(0, trainNum), Range::all());   //前3000个样本为训练数据
	trainLabels = labels(Range(0, trainNum), Range::all());

	//使用KNN算法
	int K = 5;
	Ptr tData = TrainData::create(trainData, ROW_SAMPLE, trainLabels);
	Ptr model = KNearest::create();
	model->setDefaultK(K);
	model->setIsClassifier(true);
	model->train(tData);

	//svm分类
	Ptr svm = SVM::create();//SVM分类器
	svm->setType(SVM::C_SVC);
	svm->setC(0.01);
	svm->setKernel(SVM::LINEAR);
	svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 3000, 1e-6));
	std::cout << "Starting training..." << endl;
	svm->train(trainData, ROW_SAMPLE, trainLabels);
	//训练分类器 	
	std::cout << "Finishing training..." << endl;
	//将训练好的SVM模型保存为xml文件 	
	svm->SVM::save("SVM_HOG.xml");
	


	//Ann分类
	Ptr ann = ANN_MLP::create();
	Mat layerSizes = (Mat_(1, 5) << 400, 128, 128, 128, 10);
	ann->setLayerSizes(layerSizes);
	ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001, 0.1);
	ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1.0, 1.0);
	ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS, 10000, 0.0001));

	Ptr trainDatas = TrainData::create(trainData, ROW_SAMPLE, trainLabels);
	ann->train(trainDatas);
	//保存训练结果
	ann->save("MLPModel.xml");







	//预测分类
	double train_hr = 0, test_hr = 0;
	Mat response;
	// compute prediction error on train and test data
	for (int i = 0; i < samplesNum; i++)
	{
		Mat sample = data.row(i);
		float r = model->predict(sample);   //对所有行进行预测
											//预测结果与原结果相比,相等为1,不等为0
		r = std::abs(r - labels.at(i)) <= FLT_EPSILON ? 1.f : 0.f;

		if (i < trainNum)
			train_hr += r;  //累积正确数
		else
			test_hr += r;
	}

	test_hr /= samplesNum - trainNum;
	train_hr = trainNum > 0 ? train_hr / trainNum : 1.;

	printf("accuracy: train = %.1f%%, test = %.1f%%\n",
		train_hr*100., test_hr*100.);







	//svm分类
	double svmtrain_hr = 0, svmtest_hr = 0;
	//Mat svmresponse;
	// compute prediction error on train and test data
	for (int i = 0; i < samplesNum; i++)
	{
		Mat sample = data.row(i);
		float r =svm->predict(sample);   //对所有行进行预测
											//预测结果与原结果相比,相等为1,不等为0
		r = std::abs(r - labels.at(i)) <= FLT_EPSILON ? 1.f : 0.f;

		if (i < trainNum)
			svmtrain_hr += r;  //累积正确数
		else
			svmtest_hr += r;
	}

	svmtest_hr /= samplesNum - trainNum;
	train_hr = trainNum > 0 ? svmtrain_hr / trainNum : 1.;

	printf("accuracy: train = %.1f%%, test = %.1f%%\n",
		svmtrain_hr*100., svmtest_hr*100.);


	//ann分类
	//预测分类
	double anntrain_hr = 0, anntest_hr = 0;
	//Mat response;
	// compute prediction error on train and test data
	for (int i = 0; i < samplesNum; i++)
	{
		Mat sample = data.row(i);
		float r = model->predict(sample);   //对所有行进行预测
											//预测结果与原结果相比,相等为1,不等为0
		r = std::abs(r - labels.at(i)) <= FLT_EPSILON ? 1.f : 0.f;

		if (i < trainNum)
			anntrain_hr += r;  //累积正确数
		else
			anntest_hr += r;
	}

	anntest_hr /= samplesNum - trainNum;
	anntrain_hr = trainNum > 0 ? anntrain_hr / trainNum : 1.;

	printf("accuracy: train = %.1f%%, test = %.1f%%\n",
		anntrain_hr*100., anntest_hr*100.);

	waitKey(0);
	getchar();
	return 0;
}

 最终结果:

opencv机器学习---KNN篇_第1张图片

 

 

你可能感兴趣的:(opencv机器学习---KNN篇)