其中研究文本检测的最多,共 7 篇,包括已经非常知名的PSENet,还有最近异常火爆的CRAFT。
文本识别 4 篇,其中华南理工大学的 Aggregation Cross-Entropy 代码已经开源,其不仅适用于文本数据,序列数据识别均可参考。
南洋理工大学、阿德莱德大学
Towards Robust Curve Text Detection With Conditional Spatial Expansion
Zichuan Liu, Guosheng Lin, Sheng Yang, Fayao Liu, Weisi Lin, Wang Ling Goh
字符区域感知的文本检测,不仅利用字符本身特征还利用字符之间的关系。在MSRA-TD500数据集上目前是最好的算法。
Clova AI Research, NAVER Corp
Character Region Awareness for Text Detection
Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee
https://github.com/clovaai/CRAFT-pytorch
自适应文本区域表示,用于任意形状的场景文本检测,在5个文本检测数据集上都达到了state-ofthe-art。
三星中国研究院、中科院自动化所、中科院大学、韩国三星研究院
Xiaobing Wang, Yingying Jiang, Zhenbo Luo, Cheng-Lin Liu, Hyunsoo Choi, Sungjin Kim
形状感知嵌入学习用于场景文本检测
香港中文大学、约翰霍普金斯大学、腾讯优图实验室
Learning Shape-Aware Embedding for Scene Text Detection
Zhuotao Tian, Michelle Shu, Pengyuan Lyu, Ruiyu Li, Chao Zhou, Xiaoyong Shen, Jiaya Jia
南京大学、同济大学、南京理工大学、Momenta、旷视科技
Shape Robust Text Detection With Progressive Scale Expansion Network
Wenhai Wang, Enze Xie, Xiang Li, Wenbo Hou, Tong Lu, Gang Yu, Shuai Shao
https://github.com/whai362/PSENet
百度、厦门大学
Look More Than Once: An Accurate Detector for Text of Arbitrary Shapes
Chengquan Zhang, Borong Liang, Zuming Huang, Mengyi En, Junyu Han, Errui Ding, Xinghao Ding
提出场景文本检测结果度量的新协议,更加以有利于进一步识别为导向,更加注重检测结果的完整性(Completeness)、紧凑性(Compactness)、细腻度(Tightness-aware)
华南理工大学
Tightness-Aware Evaluation Protocol for Scene Text Detection
Yuliang Liu, Lianwen Jin, Zecheng Xie, Canjie Luo, Shuaitao Zhang, Lele Xie
https://github.com/Yuliang-Liu/TIoU-metric
提出一种聚合交叉熵损失函数,用于序列数据识别,可有效替换CTC+注意力机制,实现简单、计算快速、存储要求低、方便替换CTC。
华南理工大学
Aggregation Cross-Entropy for Sequence Recognition
Zecheng Xie, Yaoxiong Huang, Yuanzhi Zhu, Lianwen Jin, Yuliang Liu, Lele Xie
https://github.com/summerlvsong/Aggregation-Cross-Entropy
数字文档中关键字检索的深度特征方法,高效、存储要求低。
NCSR “Demokritos”、希腊国立雅典理工大学、希腊约阿尼纳大学
An Alternative Deep Feature Approach to Line Level Keyword Spotting
George Retsinas, Georgios Louloudis, Nikolaos Stamatopoulos, Giorgos Sfikas, Basilis Gatos
通过迭代的图像校正进行端到端的场景文本识别
南洋理工大学
ESIR: End-To-End Scene Text Recognition via Iterative Image Rectification
Fangneng Zhan, Shijian Lu
https://github.com/fnzhan/ESIR
序列到序列的域适应网络,用于鲁棒文本图像识别
中科院自动化所、中科院大学、电子科技大学、浙江大学、阿凡题人工智能研究院
Sequence-To-Sequence Domain Adaptation Network for Robust Text Image Recognition
Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, Heng Tao Shen
水平文本
Shangxuan Tian——【ICCV2017】WeText_Scene Text Detection under Weak Supervision
Shitala Prasad——【ECCV2018】Using Object Information for Spotting Text
XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
Sheng Zhang——【AAAI2018】Feature Enhancement Network_A Refined Scene Text Detector
倾斜文本
ChengLin Liu——【ICCV2017】Deep Direct Regression for Multi-Oriented Scene Text Detection
Chuhui Xue——【ECCV2018】Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping
Cong Yao——【CVPR2017】EAST_An Efficient and Accurate Scene Text Detector
Dafang He——【CVPR2017】Multi-Scale FCN With Cascaded Instance Aware Segmentation for Arbitrary Oriented Word Spotting in the Wild
Dan Deng——【AAAI2018】PixelLink_Detecting Scene Text via Instance Segmentation
Fangfang Wang——【CVPR2018】Geometry-Aware Scene Text Detection With Instance Transformation Network
Han Hu——【ICCV2017】WordSup_Exploiting Word Annotations for Character based Text Detection
Lianwen Jin——【CVPR2017】Deep Matching Prior Network_Toward Tighter Multi-oriented Text Detection
Pan He——【ICCV2017】Single Shot Text Detector With Regional Attention
XiangBai——【CVPR2017】Detecting Oriented Text in Natural Images by link Segments
XiangBai——【CVPR2018】Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation
XiangBai——【CVPR2018】Rotation-Sensitive Regression for Oriented Scene Text Detection
Yingli Tian——【CVPR2017】Unambiguous Text Localization and Retrieval for Cluttered Scenes
Yue Wu——【ICCV2017】Self-Organized Text Detection With Minimal Post-Processing via Border Learning
Zichuang Liu——【CVPR2018】Learning Markov Clustering Networks for Scene Text Detection
曲线文本
Shangbang Long——【ECCV2018】TextSnake_A Flexible Representation for Detecting Text of Arbitrary Shapes
Wei Liu——【AAAI2018】Char-Net_A Character-Aware Neural Network for Distorted Scene Text Recognition
Yang Liu——【ECCV2018】Synthetically Supervised Feature Learning for Scene Text Recognition
Zhanzhan Cheng——【CVPR2018】AON Towards Arbitrarily-Oriented Text Recognition
Zhanzhan Cheng——【CVPR2018】Edit Probability for Scene Text Recognition
Zhanzhan Cheng——【ICCV2017】Focusing Attention_Towards Accurate Text Recognition in Natural Images
Zichuan Liu——【AAAI2018】SqueezedText_A Real-time Scene Text Recognition by Binary Convolutional
Christian Bartz——【AAAI2018】SEE_Towards Semi-Supervised End-to-End Scene Text Recognition
Chulmoo Kang——【AAAI2017】Detection and Recognition of Text Embedded in Online Images via Neural Context Models
Chunhua Shen——【ICCV2017】Towards End-to-end Text Spotting with Convolutional Recurrent
Fangneng Zhan——【ECCV2018】Verisimilar Image Synthesis for Accurate Detection and Recognition of Texts in Scenes
Lluis Gomez——【ECCV2018】Single Shot Scene Text Retrieval
Lukas Neumann——【ICCV2017】Deep TextSpotter_An End-to-End Trainable Scene Text Localization and Recognition Framework
Weilin Huang——【CVPR2018】An End-to-End TextSpotter With Explicit Alignment and Attention
XiangBai——【ECCV2018】Mask TextSpotter An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes
XiangBai——【PAMI2018】ASTER_An Attentional Scene Text Recognizer with Flexible Rectification
YuQiao——【CVPR2018】FOTS Fast Oriented Text Spotting With a Unified Network
2017年
Daitao Xing——【2017】ArbiText_Arbitrary-Oriented Text Detection in Unconstrained Scene
Dena Bazazian——【2017】Improving Text Proposals for Scene Images with Fully Convolutional Networks
Fan Jiang——【2017】Deep Scene Text Detection with Connected Component Proposals
Jiaqi Ma——【2017】Arbitrary-Oriented Scene Text Detection via Rotation Proposals
Lluis Gomez——【PR2017】TextProposals_A text-specific selective search algorithm for word spotting in the wild
Siyang Qin——【2017】Cascaded Segmentation-Detection Networks for Word-Level TextSpotting
Suman Ghosh——【2017】R-PHOC_Segmentation-Free Word Spotting using CNN
Xiangyu Zhu——【ICDAR2017】Deep Residual Text Detection Network for Scene Text
Yingying Jiang——【2017】R2CNN_Rotational Region CNN for Orientation Robust Scene Text Detection
Yuchen Dai——【2017】Fused Text Segmentation Networks for Multi-Oriented Scene Text Detection
Yuliang Liu——【2017】Detecting Curve Text in the Wild_New Dataset and New Solution(曲线文本)
2018年
Chunhua Shen——【2018】Correlation Propagation Networks for Scene Text Detection
Dafang He——【2018】TextContourNet_a Flexible and Effective Framework for Improving Scene Text
Jun Du——【ICPR2018】Sliding Line Point Regression for Shape Robust Scene Text Detection
Qiangpeng Yang——【IJCAI2018】IncepText_A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection
QiYuan——【2018】A Single Shot Text Detector with Scale-adaptive Anchors
XiangBai——【2018TIP】TextBoxes++_A Single-Shot Oriented Scene Text Detector
XiangBai——【PAMI2018】ASTER_An Attentional Scene Text Recognizer with Flexible Rectification
XiangLi——【2018】Shape Robust Text Detection with Progressive Scale Expansion Network
Yu Qiao——【BMVC2018】Boosting up Scene Text Detectors with Guided CNN
Zhuoyao Zhong——【2018】An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches
https://github.com/chongyangtao/Awesome-Scene-Text-Recognition