2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。
【TensorFlow】是 Google 多年以来内部的机器学习系统。如今,Google 正在将此系统成为开源系统,并将此系统的参数公布给业界工程师、学者和拥有大量编程能力的技术人员。
近期开始尝试对TensorFlow进行学习,因为习惯了windows系统和anaconda、spyder的python开发环境,以下教程基于以上。主要材料来源于:TensorFlow官方文档。
在官网上下载并安装Python科学计算发行版anaconda3
https://www.continuum.io/downloads/
anaconda里面集成了很多关于python科学计算的第三方库,并且安装方便。
【1】打开cmd命令窗口
【2】构建tensorflow虚拟环境:conda create –name tensorflow python=3.5
【3】在虚拟环境中安装spyder:conda install -n tensorflow spyder
【4】启动虚拟环境:activate tensorflow
【5】在虚拟环境安装tensorflow包:
pip install --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.0rc0-cp35-cp35m-win_amd64.whl
【6】关闭虚拟环境:deactivate tensorflow
【1】打开cmd命令窗口
【2】activate tensorflow
【3】启动python编译器:python
【4】输入以下代码,查看结果,等于32则正常
import tensorflow as tf
sess = tf.Session()
a = tf.constant(10)
b = tf.constant(22)
print(sess.run(a + b))
32
【1】MNIST数据集的官网是Yann LeCun’s website。下面提供了一份python源代码用于自动下载和安装这个数据集。将下面地址下载的py文件放在工作地址wd中
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py
【2】执行以下代码,查看结果:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#读取mnist文件
#设定参数
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
#建立模型
y = tf.nn.softmax(tf.matmul(x,W) + b)
#实际值
y_ = tf.placeholder("float", [None,10])
#定义cost
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#设定训练算法
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#初始化变量
init = tf.global_variables_initializer()
#启动模型
sess = tf.Session()
sess.run(init)
#施行训练
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#建立评估模型
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
#布尔值转换成浮点数,然后取平均值
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#计算所学习到的模型在测试数据集上面的正确率
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))