CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)

最近基于VGG-16缩进了网络做了一个CNN模型用于处理图像分类,实际项目,训练对象是448×32的长条试纸图片。

目录

项目源码百度云

tensorboard可视化展示

源代码


 


项目源码百度云

项目源码百度云链接:https://pan.baidu.com/s/1aWLeh4Kaft7NPlB0GxBZMg 
提取码:vjhu 

里面项目名字没改,VGG16因为是改造的,名字也没好好取,能用就行。。
CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)_第1张图片CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)_第2张图片

model 储存模型文件,为了方便下载,已经删除了,可以自己训练
logs 存放日志文件,已经删除,本文后续有图片展示tensorboard日志
data

数据文件格式如上右图,test1和train2为原始图片,test和train为处理后图片,统一为448×32大小,用于网络训练。每个下有lh1、lh2等为类别,每个类别下分别存放了图片

注:test/lh1,test1/lh1,train/lh1,train2/lh1下各有一张图片供参考,数据就不大量泄漏了,其余文件为空

VGG16_RAW.py VGG16模型源文件
VGG16_mini2.py 改造的小型CNN模型,训练出来模型大概7M左右
tf009_predition.py 预测文件
tf009.py 训练文件
image_pre_deal.py 图像预处理文件,将原始图片转为统一大小格式的图片
calculate_mean.py 计算图片平均值的文件,用于后续减均值处理

tensorboard可视化展示

tensorboard:(不要在意波折的细节,只要看清准确率,损失值数值就行了,采用的Mini-batch的迭代方式,这次训练有点乱)

CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)_第3张图片CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)_第4张图片

模型:

CNN图像分类(实际项目,特殊训练集,95%准确率,数据代码百度云)_第5张图片


源代码

tf009.py源码,训练主文件:(写的迁移学习不要介意,懒得改了。。)

'''
VGG16迁移学习训练主函数
tensorboard --logdir=D:\python\vgg16\logs

'''

import tensorflow as tf
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"  # 由于出现显卡内存不足问题,所以。。。
import numpy as np
from time import time
import vgg16.VGG16_mini2 as model


def get_batch(image_list,label_list,img_width,img_height,batch_size,capacity):#通过读取列表来载入批量图片及标签
    image = tf.cast(image_list,tf.string)
    label = tf.cast(label_list,tf.int32)
    input_queue = tf.train.slice_input_producer([image,label],shuffle=True)
    label = input_queue[1]
    image_contents = tf.read_file(input_queue[0])

    image = tf.image.decode_jpeg(image_contents,channels=3)
    image = tf.cast(image,tf.float32)
    image -= [42.79902,42.79902,42.79902] # 减均值
    # image = preprocess_for_train(image,img_height,img_width)
    image.set_shape((img_height,img_width,3))
    image_batch,label_batch = tf.train.batch([image,label],batch_size=batch_size,num_threads=64,capacity=capacity)
    label_batch = tf.reshape(label_batch,[batch_size])

    return image_batch,label_batch

def get_file(file_dir):
    images = []
    for root,sub_folders,files in os.walk(file_dir):
        for name in files:
            images.append(os.path.join(root,name))
    labels = []
    for label_name in images:
        letter = label_name.split("\\")[-2]
        if letter =="lh1":labels.append(0)
        elif letter =="lh2":labels.append(1)
        elif letter == "lh3":labels.append(2)
        elif letter == "lh4":labels.append(3)
        elif letter == "lh5":labels.append(4)
        elif letter == "lh6":labels.append(5)
        elif letter == "lh7":
            labels.append(6)

    print("check for get_file:",images[0],"label is ",labels[0])
    #shuffle
    temp = np.array([images,labels])
    temp = temp.transpose()
    np.random.shuffle(temp)
    image_list = list(temp[:,0])
    label_list = list(temp[:,1])
    label_list = [int(float(i)) for i in label_list]
    return image_list,label_list

#标签格式重构
def onehot(labels):
    n_sample = len(labels)
    n_class = 7  # max(labels) + 1
    onehot_labels = np.zeros((n_sample,n_class))
    onehot_labels[np.arange(n_sample),labels] = 1
    return onehot_labels


if __name__ == '__main__':
    startTime =time()
    batch_size = 8
    record_epoch = 70000/batch_size
    small_loop = int(7000/batch_size)
    capacity = 256  # 内存中存储的最大数据容量
    pic_height,pic_width = 32,448   # 修改图片大小参数,应当为32的倍数!不然会导致错误

    xs,ys = get_file('./data/train')#获取图像列表与标签列表
    image_batch,label_batch = get_batch(xs,ys,img_width=pic_width,img_height=pic_height,batch_size=batch_size,capacity=capacity)

    # 验证集
    xs_val,ys_val = get_file('./data/test')#获取图像列表与标签列表
    image_val_batch,label_val_batch = get_batch(xs_val,ys_val,img_width=pic_width,img_height=pic_height,batch_size=455,capacity=capacity)

    x = tf.placeholder(tf.float32,[None,pic_height,pic_width,3])
    y = tf.placeholder(tf.int32,[None,7])#7分类

    vgg = model.vgg16(x)
    fc8_fineuining = vgg.probs #即softmax(fc8)
    prediction_out = tf.argmax(fc8_fineuining,1)
    real_out = tf.argmax(y,1)
    correct_prediction = tf.equal(prediction_out,real_out)#检查预测类与实际类别是否匹配
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#准确率
    loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=fc8_fineuining,labels=y))#损失函数
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss_function)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    # vgg.load_weights('vgg16_weights.npz',sess)
    saver = tf.train.Saver()

    # # 断点续训
    # ckpt_dir = "./model/"
    # ckpt = tf.train.latest_checkpoint(ckpt_dir)
    # if ckpt != None:
    #     saver.restore(sess, ckpt)
    #     print('saver restore finish')
    # else:
    #     print("training from scratch")

    #启动线程
    coord = tf.train.Coordinator()#使用协调器管理线程
    threads = tf.train.start_queue_runners(coord=coord,sess=sess)
    # 日志记录
    summary_writer = tf.summary.FileWriter('./logs/', graph=sess.graph, flush_secs=15)
    summary_writer2 = tf.summary.FileWriter('./logs/plot2/', flush_secs=15)
    tf.summary.scalar(name='loss_func', tensor=loss_function)
    tf.summary.scalar(name='accuracy', tensor=accuracy)
    merged_summary_op = tf.summary.merge_all()


    epoch_start_time = time()

    # 采用Mini-batch迭代
    step = 0
    epoch = 10000
    for i in range(epoch):
        for j in range(small_loop):

            images,labels = sess.run([image_batch,label_batch])
            labels = onehot(labels)

            # # 可视化
            # plt.subplot(221)
            # plt.imshow(images[0, :, :, 0])
            # plt.show()
            # print(1)

            sess.run(optimizer,feed_dict={x:images,y:labels})
            merged_summary,loss,real_train_out = sess.run([merged_summary_op,loss_function,real_out],feed_dict={x:images,y:labels})
            summary_writer.add_summary(merged_summary, global_step=step)
            # print(i,j,"to see train data:",real_train_out[:10])
            step += 1

        images_val, labels_val = sess.run([image_val_batch, label_val_batch])
        labels_val = onehot(labels_val)
        merged_summary_val, loss_val,accuracy_val,prediction_val_out,real_val_out = sess.run([merged_summary_op, loss_function,accuracy,prediction_out,real_out], feed_dict={x: images_val, y: labels_val})
        summary_writer2.add_summary(merged_summary_val, global_step=step)

        # 输出每个类别正确率
        lh1_right, lh2_right, lh3_right, lh4_right, lh5_right, lh6_right, lh7_right = 0, 0, 0, 0, 0, 0, 0
        lh1_wrong, lh2_wrong, lh3_wrong, lh4_wrong, lh5_wrong, lh6_wrong, lh7_wrong = 0, 0, 0, 0, 0, 0, 0
        for ii in range(len(prediction_val_out)):
            if prediction_val_out[ii] == real_val_out[ii]:
                if real_val_out[ii] == 0:lh1_right+=1
                elif real_val_out[ii] == 1:lh2_right+=1
                elif real_val_out[ii] == 2:lh3_right += 1
                elif real_val_out[ii] == 3:lh4_right += 1
                elif real_val_out[ii] == 4:lh5_right += 1
                elif real_val_out[ii] == 5:lh6_right += 1
                elif real_val_out[ii] == 6:lh7_right += 1
            else:
                if real_val_out[ii] == 0:lh1_wrong+=1
                elif real_val_out[ii] == 1:lh2_wrong+=1
                elif real_val_out[ii] == 2:lh3_wrong += 1
                elif real_val_out[ii] == 3:lh4_wrong += 1
                elif real_val_out[ii] == 4:lh5_wrong += 1
                elif real_val_out[ii] == 5:lh6_wrong += 1
                elif real_val_out[ii] == 6:lh7_wrong += 1
        print(i,"correct rate :",((lh1_right)/(lh1_right+lh1_wrong)),((lh2_right)/(lh2_right+lh2_wrong)),((lh3_right)/(lh3_right+lh3_wrong)),((lh4_right)/(lh4_right+lh4_wrong)),((lh5_right)/(lh5_right+lh5_wrong)),((lh6_right)/(lh6_right+lh6_wrong)),((lh7_right)/(lh7_right+lh7_wrong)))
        # print(i,"nums:",((lh1_right+lh1_wrong)),(lh2_right+lh2_wrong),((lh3_right+lh3_wrong)),((lh4_right+lh4_wrong)),(lh5_right+lh5_wrong),((lh6_right+lh6_wrong)),((lh7_right+lh7_wrong)))

        print(i,"epoch's accuracy:",accuracy_val)
        print(i," loss is %f"%loss,"val loss is %f"%loss_val)


        epoch_end_time =time()
        print(i," epoch takes:",(epoch_end_time-epoch_start_time))
        epoch_start_time = epoch_end_time
        if i % 1 == 0 and i != 0:
            saver.save(sess,os.path.join("./model/",'epoch{:06d}.ckpt'.format(i)))
            print("------------model saved")
        # print("-------------Epoch %d is finished"%i)

    summary_writer.close()
    saver.save(sess,"./model/")
    print("optimization finished")

    duration = time() - startTime
    print("train takes:","{:.2f}".format(duration))

    coord.request_stop()#通知线程关闭
    coord.join(threads)#等其他线程关闭这一函数才返回

 

你可能感兴趣的:(#,视觉相关网络)