查看当前服务器中的所有topic
cd /usr/local/kafka/bin
./kafka-topics.sh –list –zookeeper minimaster:2181
创建topic
./kafka-topics.sh –create –zookeeper minimaster:2181 –replication-factor 1 –partitions 1 –topic test2
删除topic
./kafka-topics.sh –delete –zookeeper minimaster:2181 –topic test2
需要server.properties中设置delete.topic.enable=true否则只是标记删除或者直接重启。
通过shell命令发送消息
./kafka-console-producer.sh –broker-list minimaster:9092 –topic test
通过shell消费消息
./kafka-console-consumer.sh –zookeeper minimaster:2181 –from-beginning –topic test
查看消费位置
./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker –zookeeper minimaster:2181 –group testGroup
查看某个Topic的详情
./kafka-topics.sh –topic test –describe –zookeeper minimaster:2181
对分区数进行修改
bin/kafka-topics.sh –zookeeper minimaster –alter –partitions 15 –topic utopic
在IDEA上的代码实现
kafka生产者
package myRPC.qf.itcast.spark
import java.util.Properties
import kafka.producer.{KeyedMessage, Producer, ProducerConfig}
/**
* 实现一个Producer
* 1.能够发送数据到kafka集群指定的Topic
* 2.实现自定义分区器
*/
object KafkaProducer {
def main(args: Array[String]): Unit = {
//生产者生产的数据要存储到那个Topic
val topic = "test2"
//创建配置文件信息类
val props: Properties = new Properties()
//数据序列化编码类型
props.put("serializer.class","kafka.serializer.StringEncoder")
//kafka集群列表
props.put("metadata.broker.list","minimaster:9092,miniSlave1:9092,miniSlave2:9092")
//设置发送数据是否需要服务端的反馈: 0 1 -1
//0: producer不会等待broker发送ack
//1:当leader接收到消息之后发送ack
//-1:当所有的follower都同步消息成功后发送ack
props.put("request.required.acks","1")
//调用分区器
props.put("partitioner.class","kafka.producer.DefaultPartitioner")
// props.put("partitioner.class","com")
//创建一个生产者对象
val producer: Producer[String, String] = new Producer(new ProducerConfig(props))
//模拟生产数据
for(i <- 1 to 10){
val msg = s"$i: Producer send data"
producer.send(new KeyedMessage[String,String](topic,msg))
}
}
}
kafka消费者
package myRPC.qf.itcast.spark
import java.util.Properties
import kafka.consumer._
import kafka.message.MessageAndMetadata
import scala.actors.threadpool.{ExecutorService, Executors}
import scala.collection.mutable
class KafkaConsumerTest(val consumer: String,val stream: KafkaStream[Array[Byte],Array[Byte]]) extends Runnable{
override def run() = {
val it: ConsumerIterator[Array[Byte],Array[Byte]] = stream.iterator()
while(it.hasNext()){
val data: MessageAndMetadata[Array[Byte], Array[Byte]] = it.next()
val topic: String = data.topic
val partition: Int = data.partition
val offset: Long = data.offset
val msg: String = new String(data.message())
println(s"Consumer: $consumer,Topic: $topic,Partition: $partition,Offset: $offset,msg: $msg")
}
}
}
object KafkaConsumerTest{
def main(args: Array[String]): Unit = {
val topic = "test2"
//用来存储多个Topic
val topics = new mutable.HashMap[String,Int]()
topics.put(topic,2)
//配置文件信息
val props = new Properties()
//consumer组id
props.put("group.id","group1")
//指定zookeeper的地址,注意在value里逗号后面不能有空格
props.put("zookeeper.connect","minimaster:2181,miniSlave1:2181,miniSlave2:2181")
//如果zookeeper没有offset值或offset值超出范围,那么就给个初始的offset
props.put("auto.offset.reset","smallest")
//把配置信息封装到ConsumerConfig对象里
val config: ConsumerConfig = new ConsumerConfig(props)
//创建Consumer,如果没有数据,会一直线程等待
val consumer: ConsumerConnector = Consumer.create(config)
//获取所有Topic的数据流
val streams: collection.Map[String, List[KafkaStream[Array[Byte], Array[Byte]]]] =
consumer.createMessageStreams(topics)
//获取Topic为KafkaSimple的数据流
val stream: Option[List[KafkaStream[Array[Byte], Array[Byte]]]] = streams.get(topic)
//创建一个固定大小的线程池
val pool: ExecutorService = Executors.newFixedThreadPool(3)
for(i <- 0 until stream.size){
pool.execute(new KafkaConsumerTest(s"Consumer: $i",stream.get(i)))
}
}
}
在IDEA上先运行
KafkaProducer.scala,(开启生产者)显示结果
运行KafkaConsumer.scala,(开启消费者)显示结果:
之后,每执行一次producer,在Linux显示上会重复添加相对应的内容