k-最近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。
K最近邻(K-Nearest Neighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。
如果一个实例在特征空间中的K个最相似(即特征空间中最近邻)的实例中的大多数属于某一个类别,则该实例也属于这个类别。所选择的邻居都是已经正确分类的实例。
该算法假定所有的实例对应于N维欧式空间Ân中的点。通过计算一个点与其他所有点之间的距离,取出与该点最近的K个点,然后统计这K个点里面所属分类比例最大的,则这个点属于该分类。
该算法涉及3个主要因素:实例集、距离或相似的衡量、k的大小。
一个实例的最近邻是根据标准欧氏距离定义的。更精确地讲,把任意的实例x表示为下面的特征向量:
<a1(x),a2(x),...,an(x)>
其中ar(x)表示实例x的第r个属性值。那么两个实例xi和xj间的距离定义为d(xi,xj),其中:
d(xi,xj)=∑r=1n(ar(xi)−ar(xj))2−−−−−−−−−−−−−−−−−√
逼近离散值函数f:Ân−V的k-近邻算法
训练算法:
对于每个训练样例<x,f(x)>,把这个样例加入列表training_examples
分类算法:
给定一个要分类的查询实例xq
在training_examples中选出最靠近xq的k个实例,并用x1,....,xk表示
返回
其中如果a=b那么d(a,b)=1,否则d(a,b)=0
简单来说,KNN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑离这个训练数据最近的K个点看看这几个点属于什么类型,然后用少数服从多数的原则,给新数据归类。
下图中有两种类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形,中间那个绿色的圆形是待分类数据:
如果K=3,那么离绿色点最近的有2个红色的三角形和1个蓝色的正方形,这三个点进行投票,于是绿色的待分类点就属于红色的三角形。而如果K=5,那么离绿色点最近的有2个红色的三角形和3个蓝色的正方形,这五个点进行投票,于是绿色的待分类点就属于蓝色的正方形。
下图则图解了一种简单情况下的k-最近邻算法,在这里实例是二维空间中的点,目标函数具有布尔值。正反训练样例用“+”和“-”分别表示。图中也画出了一个查询点xq。注意在这幅图中,1-近邻算法把xq分类为正例,然而5-近邻算法把xq分类为反例。
图解说明:左图画出了一系列的正反训练样例和一个要分类的查询实例xq。1-近邻算法把xq分类为正例,然而5-近邻算法把xq分类为反例。
右图是对于一个典型的训练样例集合1-近邻算法导致的决策面。围绕每个训练样例的凸多边形表示最靠近这个点的实例空间(即这个空间中的实例会被1-近邻算法赋予该训练样例所属的分类)。
对前面的k-近邻算法作简单的修改后,它就可被用于逼近连续值的目标函数。为了实现这一点,我们让算法计算k个最接近样例的平均值,而不是计算其中的最普遍的值。更精确地讲,为了逼近一个实值目标函数f:Rn⟶R,我们只要把算法中的公式替换为:
f(xq)⟵∑ki=1f(xi)k
对k-最近邻算法的一个显而易见的改进是对k个近邻的贡献加权,根据它们相对查询点xq的距离,将较大的权值赋给较近的近邻。
例如,在上表逼近离散目标函数的算法中,我们可以根据每个近邻与xq的距离平方的倒数加权这个近邻的“选举权”。
方法是通过用下式取代上表算法中的公式来实现:
f(xq)⟵argmaxv∈V∑i=1kwiδ(v,f(xi))
其中
wi≡1d(xq,xi)2
为了处理查询点xq恰好匹配某个训练样例xi,从而导致分母为0的情况,我们令这种情况下的f′(xq)等于f(xi)。如果有多个这样的训练样例,我们使用它们中占多数的分类。
我们也可以用类似的方式对实值目标函数进行距离加权,只要用下式替换上表的公式:
f(xq)⟵∑ki=1wif(xi)∑ki=1wi
其中wi的定义与之前公式中相同。
注意这个公式中的分母是一个常量,它将不同权值的贡献归一化(例如,它保证如果对所有的训练样例xi,f(xi)=c,那么(xq)←c)。
注意以上k-近邻算法的所有变体都只考虑k个近邻以分类查询点。如果使用按距离加权,那么允许所有的训练样例影响xq的分类事实上没有坏处,因为非常远的实例对(xq)的影响很小。考虑所有样例的惟一不足是会使分类运行得更慢。如果分类一个新的查询实例时考虑所有的训练样例,我们称此为全局(global)法。如果仅考虑最靠近的训练样例,我们称此为局部(local)法。
四、KNN的优缺点
(1)优点
①简单,易于理解,易于实现,无需参数估计,无需训练;
②精度高,对异常值不敏感(个别噪音数据对结果的影响不是很大);
③适合对稀有事件进行分类;
④特别适合于多分类问题(multi-modal,对象具有多个类别标签),KNN要比SVM表现要好.
(2)缺点
①对测试样本分类时的计算量大,空间开销大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本;
②可解释性差,无法给出决策树那样的规则;
③最大的缺点是当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进;
④消极学习方法。
五、对k-近邻算法的说明
按距离加权的k-近邻算法是一种非常有效的归纳推理方法。它对训练数据中的噪声有很好的鲁棒性,而且当给定足够大的训练集合时它也非常有效。注意通过取k个近邻的加权平均,可以消除孤立的噪声样例的影响。
问题一:近邻间的距离会被大量的不相关属性所支配。
应用k-近邻算法的一个实践问题是,实例间的距离是根据实例的所有属性(也就是包含实例的欧氏空间的所有坐标轴)计算的。这与那些只选择全部实例属性的一个子集的方法不同,例如决策树学习系统。
比如这样一个问题:每个实例由20个属性描述,但在这些属性中仅有2个与它的分类是有关。在这种情况下,这两个相关属性的值一致的实例可能在这个20维的实例空间中相距很远。结果,依赖这20个属性的相似性度量会误导k-近邻算法的分类。近邻间的距离会被大量的不相关属性所支配。这种由于存在很多不相关属性所导致的难题,有时被称为维度灾难(curse of dimensionality)。最近邻方法对这个问题特别敏感。
解决方法:当计算两个实例间的距离时对每个属性加权。
这相当于按比例缩放欧氏空间中的坐标轴,缩短对应于不太相关属性的坐标轴,拉长对应于更相关的属性的坐标轴。每个坐标轴应伸展的数量可以通过交叉验证的方法自动决定。
问题二:应用k-近邻算法的另外一个实践问题是如何建立高效的索引。因为这个算法推迟所有的处理,直到接收到一个新的查询,所以处理每个新查询可能需要大量的计算。
解决方法:目前已经开发了很多方法用来对存储的训练样例进行索引,以便在增加一定存储开销情况下更高效地确定最近邻。一种索引方法是kd-tree(Bentley 1975;Friedman et al. 1977),它把实例存储在树的叶结点内,邻近的实例存储在同一个或附近的结点内。通过测试新查询xq的选定属性,树的内部结点把查询xq排列到相关的叶结点。
这里实现一个手写识别算法,这里只简单识别0~9数字。
输入:每个手写数字已经事先处理成32*32的二进制文本,存储为txt文件。每个数字大约有200个样本。每个样本保持在一个txt文件中。手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,如下图所示。目录trainingDigits存放的是大约2000个训练数据,testDigits存放大约900个测试数据。
# convert image to vector
def img2vector(filename):
rows = 32
cols = 32
imgVector = zeros((1, rows * cols))
fileIn = open(filename)
for row in xrange(rows):
lineStr = fileIn.readline()
for col in xrange(cols):
imgVector[0, row * 32 + col] = int(lineStr[col])
return imgVector
# load dataSet
def loadDataSet():
## step 1: Getting training set
print "---Getting training set..."
dataSetDir = './'
trainingFileList = os.listdir(dataSetDir + 'trainingDigits') # load the training set
numSamples = len(trainingFileList)
train_x = zeros((numSamples, 1024))
train_y = []
for i in xrange(numSamples):
filename = trainingFileList[i]
# get train_x
train_x[i, :] = img2vector(dataSetDir + 'trainingDigits/%s' % filename)
# get label from file name such as "1_18.txt"
label = int(filename.split('_')[0]) # return 1
train_y.append(label)
## step 2: Getting testing set
print "---Getting testing set..."
testingFileList = os.listdir(dataSetDir + 'testDigits') # load the testing set
numSamples = len(testingFileList)
test_x = zeros((numSamples, 1024))
test_y = []
for i in xrange(numSamples):
filename = testingFileList[i]
# get train_x
test_x[i, :] = img2vector(dataSetDir + 'testDigits/%s' % filename)
# get label from file name such as "1_18.txt"
label = int(filename.split('_')[0]) # return 1
test_y.append(label)
return train_x, train_y, test_x, test_y
# classify using kNN
def kNNClassify(newInput, dataSet, labels, k):
numSamples = dataSet.shape[0] # shape[0] stands for the num of row
## step 1: calculate Euclidean distance
# tile(A, reps): Construct an array by repeating A reps times
# the following copy numSamples rows for dataSet
diff = tile(newInput, (numSamples, 1)) - dataSet # Subtract element-wise
squaredDiff = diff ** 2 # squared for the subtract
squaredDist = sum(squaredDiff, axis = 1) # sum is performed by row
distance = squaredDist ** 0.5
## step 2: sort the distance
# argsort() returns the indices that would sort an array in a ascending order
sortedDistIndices = argsort(distance)
classCount = {} # define a dictionary (can be append element)
for i in xrange(k):
## step 3: choose the min k distance
voteLabel = labels[sortedDistIndices[i]]
## step 4: count the times labels occur
# when the key voteLabel is not in dictionary classCount, get()
# will return 0
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
## step 5: the max voted class will return
maxCount = 0
for key, value in classCount.items():
if value > maxCount:
maxCount = value
maxIndex = key
return maxIndex
# test hand writing class
def testHandWritingClass():
## step 1: load data
print "step 1: load data..."
train_x, train_y, test_x, test_y = loadDataSet()
## step 2: training...
print "step 2: training..."
pass
## step 3: testing
print "step 3: testing..."
numTestSamples = test_x.shape[0]
matchCount = 0
for i in xrange(numTestSamples):
predict = kNNClassify(test_x[i], train_x, train_y, 3)
if predict == test_y[i]:
matchCount += 1
accuracy = float(matchCount) / numTestSamples
## step 4: show the result
print "step 4: show the result..."
print 'The classify accuracy is: %.2f%%' % (accuracy * 100)
相似性一般用空间内两个点的距离来度量。距离越大,表示两个越不相似。
作为相似性度量的距离函数一般满足下列性质:
这里,X,Y和Z是对应特征空间中的三个点。
假设X,Y分别是N维特征空间中的一个点,其中X=(x1,x2,...,xn)T,Y=(y1,y2,...,yn)T,d(X,Y)表示相应的距离函数,它给出了X和Y之间的距离测度。
距离的选择有很多种,常用的距离函数如下:
1. 明考斯基(Minkowsky)距离
d(X,Y)=[∑i=1n∣xi−yi∣λ]1λ,λ一般取整数值,不同的λ取值对应于不同的距离
曼哈顿(Manhattan)距离
d(X,Y)=∑i=1n∣xi−yi∣,该距离是Minkowsky距离在λ=1时的一个特例
Cityblock距离
d(X,Y)=∑i=1nwi∣xi−yi∣,该距离是Manhattan距离的加权修正,其中wi,i=1,2,...,n是权重因子
欧几里德(Euclidean)距离(欧式距离)
d(X,Y)=[∑i=1n∣xi−yi∣2]12=(X−Y)(X−Y)T−−−−−−−−−−−−−−√,是Minkowsky距离在λ=2时的特例
Canberra距离
d(X,Y)=∑i=1nxi−yixi+yi
(6)Mahalanobis距离(马式距离)
d(X,M)=(X−M)TΣ−1(X−M)−−−−−−−−−−−−−−−−−−√
d(X,M)给出了特征空间中的点X和M之间的一种距离测度,其中M为某一个模式类别的均值向量,∑为相应模式类别的协方差矩阵。
该距离测度考虑了以M为代表的模式类别在特征空间中的总体分布,能够缓解由于属性的线性组合带来的距离失真。易见,到M的马式距离为常数的点组成特征空间中的一个超椭球面。
切比雪夫(Chebyshev)距离
d(X,Y)=maxi(∣xi−yi∣)
L∞=limk→∞(∑i=1k∣xi−yi∣k)1k
d=max(∣x2−x1∣,∣y2−y1∣)
切比雪夫距离或是L∞度量是向量空间中的一种度量,二个点之间的距离定义为其各坐标数值差的最大值。在二维空间中。以(x1,y1)和(x2,y2)二点为例,其切比雪夫距离为
d=max(|x2−x1|,|y2−y1|)
平均距离
daverage=[1n∑i=1n(xi−yi)2]12
比较
典型算法
[1] Trevor Hastie & Rolbert Tibshirani. Discriminant Adaptive Nearest Neighbor Classification. IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE INTELLIGENCE,1996.
[2] R. Short & K. Fukanaga. A New Nearest Neighbor Distance Measure,Pro. Fifth IEEE Int’l Conf.Pattern Recognition,pp.81-86,1980.
[3] T.M Cover. Nearest Neighbor Pattern Classification,Pro. IEEE Trans,Infomation Theory,1967.
[4] C.J.Stone. Consistent Nonparametric Regression ,Ann.Stat.,vol.3,No.4,pp.595-645,1977.
[5] W Cleveland. Robust Locally-Weighted Regression and Smoothing Scatterplots,J.Am.Statistical.,vol.74,pp.829-836,1979.
[6] T.A.Brown & J.Koplowitz. The Weighted Nearest Neighbor Rule for Class Dependent Sample Sizes,IEEE Tran. Inform.Theory,vol.IT-25,pp.617-619,Sept.1979.
[7] J.P.Myles & D.J.Hand. The Multi-Class Metric Problem in Nearest Neighbor Discrimination Rules,Pattern Recognition,1990.
[8] N.S.Altman. An Introduction to Kernel and Nearest Neighbor Nonparametric Regression,1992.
[9]Min-Ling Zhang & Zhi-Hua Zhou. M1-KNN:A Lazy Learning Approach to Multi-Label Learning,2007.
[10]Peter Hall,Byeong U.Park & Richard J. Samworth. Choice of Neighbor Order In Nearest Neighbor Classification,2008.
[11] Jia Pan & Dinesh Manocha. Bi-Level Locality Sensitive Hashing for K-Nearest Neighbor Computation,2012.