转自机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线
摘要:
数据挖掘、机器学习和推荐系统中的评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)简介。
引言:
在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。
业内目前常常采用的评价指标有准确率(Precision)、召回率(Recall)、F值(F-Measure)等,下图是不同机器学习算法的评价指标。下文讲对其中某些指标做简要介绍。
本文针对二元分类器!
本文针对二元分类器!!
本文针对二元分类器!!!
对分类的分类器的评价指标将在以后文章中介绍。
在介绍指标前必须先了解“混淆矩阵”:
True Positive(真正,TP):将正类预测为正类数
True Negative(真负,TN):将负类预测为负类数
False Positive(假正,FP):将负类预测为正类数误报 (Type I error)
False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)
准确率(accuracy)计算公式为:
错误率则与准确率相反,描述被分类器错分的比例,
精确率(precision)定义为:
表示被分为正例的示例中实际为正例的比例。
召回率是覆盖面的度量,度量有多个正例被分为正例,
P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。
F-Measure是Precision和Recall加权调和平均:
计算速度:分类器训练和预测需要的时间;
鲁棒性:处理缺失值和异常值的能力;
可扩展性:处理大数据集的能力;
可解释性:分类器的预测标准的可理解性,像决策树产生的规则就是很容易理解的,而神经网络的一堆参数就不好理解,我们只好把它看成一个黑盒子。
下面来看一下ROC和PR曲线(以下内容为自己总结):
ROC(Receiver Operating Characteristic)曲线是以假正率(FP_rate)和假负率(TP_rate)为轴的曲线,ROC曲线下面的面积我们叫做AUC,如下图所示:
图片根据Paper:Learning from eImbalanced Data画出
其中:这里写图片描述
(1)曲线与FP_rate轴围成的面积(记作AUC)越大,说明性能越好,即图上L2曲线对应的性能优于曲线L1对应的性能。即:曲线越靠近A点(左上方)性能越好,曲线越靠近B点(右下方)曲线性能越差。
(2)A点是最完美的performance点,B处是性能最差点。
(3)位于C-D线上的点说明算法性能和random猜测是一样的–如C、D、E点。位于C-D之上(即曲线位于白色的三角形内)说明算法性能优于随机猜测–如G点,位于C-D之下(即曲线位于灰色的三角形内)说明算法性能差于随机猜测–如F点。
(4)虽然ROC曲线相比较于Precision和Recall等衡量指标更加合理,但是其在高不平衡数据条件下的的表现仍然过于理想,不能够很好的展示实际情况。
即,PR(Precision-Recall)曲线。
举个例子(例子来自Paper:Learning from eImbalanced Data):
假设N_c>>P_c(即Negative的数量远远大于Positive的数量),若FP很大,即有很多N的sample被预测为P,因为这里写图片描述,因此FP_rate的值仍然很小(如果利用ROC曲线则会判断其性能很好,但是实际上其性能并不好),但是如果利用PR,因为Precision综合考虑了TP和FP的值,因此在极度不平衡的数据下(Positive的样本较少),PR曲线可能比ROC曲线更实用。