deeplearning.ai——字符级语言模型-恐龙岛

数据集包含了所有恐龙的名字,构建一个字符级语言模型来创建新的恐龙名称,算法能够学习不同的名称模式,并随机生成新的名称。

完成这项作业能够学到:

  • 如何存储文本数据以便使用RNN进行处理
  • 如何合成数据,通过在每个时间步采样预测值并将其传递给下一个RNN单元
  • 如何构建一个字符级文本生成循环神经网络
  • 为什么剪裁梯度很重要

 

1 - Problem Statement

1.1 - Dataset and Preprocessing

运行下面单元来读取恐龙名字的数据集,创建一个唯一字符的列表,计算数据集和词表大小。

data = open('dinos.txt', 'r').read()
data= data.lower()
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('There are %d total characters and %d unique characters in your data.' % (data_size, vocab_size))
There are 19909 total characters and 27 unique characters in your data.

字符包括a-z,加上\n,它在这节作业中的作用类似于,代表恐龙名字的结束而不是一行的结束。创建一个python字典来映射每个索引和相应的字符,这会帮助找到softmax层的概率分布输出中的字符对应的索引。

char_to_ix = { ch:i for i,ch in enumerate(sorted(chars)) }
ix_to_char = { i:ch for i,ch in enumerate(sorted(chars)) }
print(ix_to_char)
{0: '\n', 1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h', 9: 'i', 10: 'j', 11: 'k', 12: 'l', 13: 'm', 14: 'n', 15: 'o', 16: 'p', 17: 'q', 18: 'r', 19: 's', 20: 't', 21: 'u', 22: 'v', 23: 'w', 24: 'x', 25: 'y', 26: 'z'}

1.2 - Overview of the model

模型有以下结构:

  1. 初始化参数
  2. 运行优化的循环:前向传播计算损失,反向传播计算损失的梯度,裁剪梯度避免梯度爆炸,使用梯度下降更新策略更新参数
  3. 返回学习到的参数

在每个时间步,RNN尝试预测给定之前的字符后下一个字符是什么,X=(x^{<1>},x^{<2>},...,x^{<T_{x}>})是训练集,Y=(y^{<1>},y^{<2>},...,y^{<T_{x}>})是测试集,其中,y^{<t>}=x^{<t+1>}

 

2 - Building blocks of the model

构建两个模块:

  • 梯度裁剪:避免梯度爆炸
  • 采样:用来生成字符

2.1 - Clipping the gradients in the optimization loop

实现一个在优化循环内部调用的clip函数,整个循环结构包括前向传播、损失计算、反向传播、参数更新。参数更新之前,需要时要执行梯度裁剪,来确保梯度不会爆炸。

该clip函数接收一个梯度的字典,返回一个裁剪版本的梯度,如果需要的话。裁剪梯度有不同的方法,使用一个简单的element-wise裁剪过程,梯度向量的每一个元素都被裁剪为介于某个范围[-N,N]的值,一般来说,需要提供一个最大值(比如10)。在本例中,如果梯度向量的任何分量大于10,则设为10,如果梯度向量的任何分量小于-10,则设为-10。

练习:实现下列函数来返回裁剪后的梯度。

### GRADED FUNCTION: clip

def clip(gradients, maxValue):
    '''
    Clips the gradients' values between minimum and maximum.
    
    Arguments:
    gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"
    maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue
    
    Returns: 
    gradients -- a dictionary with the clipped gradients.
    '''
    
    dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']
   
    ### START CODE HERE ###
    # clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)
    for gradient in [dWax, dWaa, dWya, db, dby]:
        np.clip(gradient, -maxValue, maxValue, out=gradient)
    ### END CODE HERE ###
    
    gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}
    
    return gradients

2.2 - Sampling

生成新文本的过程:

练习:实现采样函数,需要以下四步:

  1. 设置x^{<1>}=\vec {0}a^{<0>}=\vec{0}
  2. 运行一步前向传播得到a^{<1>}\hat{y}^{<1>},公式为:,其中\hat{y}^{<t+1>}是一个softmax概率向量,\hat{y}_{i}^{<t+1>}代表下标为i的字符是下一个字符的概率值。
  3. 采样:根据概率分布选取下一个字符的索引,如果\hat{y}_{i}^{<t+1>}=0.16,则选取索引“i”的概率为16%,可以使用np.random.choice:
  4. 最后一步是覆盖x,该变量当前存储x^{<t>}x^{<t+1>}的值,通过创建一个与选择的预测字符对应的one-hot向量来表示x^{<t+1>},前向传播x^{<t+1>}​​​​​​​,不断重复直到得到一个\n字符,表示已到达恐龙名字的结尾。
# GRADED FUNCTION: sample

def sample(parameters, char_to_ix, seed):
    """
    Sample a sequence of characters according to a sequence of probability distributions output of the RNN

    Arguments:
    parameters -- python dictionary containing the parameters Waa, Wax, Wya, by, and b. 
    char_to_ix -- python dictionary mapping each character to an index.
    seed -- used for grading purposes. Do not worry about it.

    Returns:
    indices -- a list of length n containing the indexes of the sampled characters.
    """
    
    # Retrieve parameters and relevant shapes from "parameters" dictionary
    Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']
    # Waa:(n_a, n_a)
    # Wax:(n_a, vocab_size)
    # Wya:(vocab_size, n_a)
    # by:(vocab_size, 1)
    # b:(n_a, 1)
    vocab_size = by.shape[0]
    n_a = Waa.shape[1]
    
    ### START CODE HERE ###
    # Step 1: Create the one-hot vector x for the first character (initializing the sequence generation). (≈1 line)
    x = np.zeros((vocab_size, 1))
    # Step 1': Initialize a_prev as zeros (≈1 line)
    a_prev = np.zeros((n_a, 1))
    
    # Create an empty list of indices, this is the list which will contain the list of indexes of the characters to generate (≈1 line)
    indices = []
    
    # Idx is a flag to detect a newline character, we initialize it to -1
    idx = -1 
    
    # Loop over time-steps t. At each time-step, sample a character from a probability distribution and append 
    # its index to "indexes". We'll stop if we reach 50 characters (which should be very unlikely with a well 
    # trained model), which helps debugging and prevents entering an infinite loop. 
    counter = 0
    newline_character = char_to_ix['\n']
    
    while (idx != newline_character and counter != 50):
        
        # Step 2: Forward propagate x using the equations (1), (2) and (3)
        a = np.tanh(np.dot(Wax, x) + np.dot(Waa, a_prev) + b)
        z = np.dot(Wya, a) + by
        y = softmax(z)
        
        # for grading purposes
        np.random.seed(counter+seed) 
        
        # Step 3: Sample the index of a character within the vocabulary from the probability distribution y
        idx = np.random.choice(list(range(vocab_size)), p=y.ravel())

        # Append the index to "indices"
        indices.append(idx)
        
        # Step 4: Overwrite the input character as the one corresponding to the sampled index.
        x = np.zeros((vocab_size, 1))
        x[idx] = 1
    
        # Update "a_prev" to be "a"
        a_prev = a
        
        # for grading purposes
        seed += 1
        counter +=1
        
    ### END CODE HERE ###

    if (counter == 50):
        indices.append(char_to_ix['\n'])
    
    return indices

 

3 - Building the language model

3.1 - Gradient descent

实现一个函数来执行一步随机梯度下降(使用裁剪梯度),每次都要遍历整个训练样本,所以优化算法是随机梯度下降,RNN中通常的优化循环有以下步骤:

  • 前向传播计算损失
  • 通过时间的反向传播计算损失相对于参数的梯度
  • 裁剪梯度,如果必要
  • 使用梯度下降更新参数

练习:实现优化过程(随机梯度下降的一步)

提供以下函数:

deeplearning.ai——字符级语言模型-恐龙岛_第1张图片

# GRADED FUNCTION: optimize

def optimize(X, Y, a_prev, parameters, learning_rate = 0.01):
    """
    Execute one step of the optimization to train the model.
    
    Arguments:
    X -- list of integers, where each integer is a number that maps to a character in the vocabulary.
    Y -- list of integers, exactly the same as X but shifted one index to the left.
    a_prev -- previous hidden state.
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        b --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    learning_rate -- learning rate for the model.
    
    Returns:
    loss -- value of the loss function (cross-entropy)
    gradients -- python dictionary containing:
                        dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                        dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                        dWya -- Gradients of hidden-to-output weights, of shape (n_y, n_a)
                        db -- Gradients of bias vector, of shape (n_a, 1)
                        dby -- Gradients of output bias vector, of shape (n_y, 1)
    a[len(X)-1] -- the last hidden state, of shape (n_a, 1)
    """
    
    ### START CODE HERE ###
    
    # Forward propagate through time (≈1 line)
    loss, cache = rnn_forward(X, Y, a_prev, parameters)
    
    # Backpropagate through time (≈1 line)
    gradients, a = rnn_backward(X, Y, parameters, cache)
    
    # Clip your gradients between -5 (min) and 5 (max) (≈1 line)
    gradients = clip(gradients, 5)
    
    # Update parameters (≈1 line)
    parameters = update_parameters(parameters, gradients, learning_rate)
    
    ### END CODE HERE ###
    
    return loss, gradients, a[len(X)-1]

3.2 - Training the model

给定了恐龙名字的数据集,使用数据集的每一行(一个名字)作为一个训练样本,每100步随机梯度下降,抽样10个随机选择的名字,看看算法如何运作的,记得打乱数据集,随机梯度下降就可以随机访问样本。

练习:根据说明实现model(),当examples[index]包含了一个恐龙名字,为了构建样本(X,Y),可以:

# GRADED FUNCTION: model

def model(data, ix_to_char, char_to_ix, num_iterations = 35000, n_a = 50, dino_names = 7, vocab_size = 27):
    """
    Trains the model and generates dinosaur names. 
    
    Arguments:
    data -- text corpus
    ix_to_char -- dictionary that maps the index to a character
    char_to_ix -- dictionary that maps a character to an index
    num_iterations -- number of iterations to train the model for
    n_a -- number of hidden neurons in the softmax layer
    dino_names -- number of dinosaur names you want to sample at each iteration. 
    vocab_size -- number of unique characters found in the text, size of the vocabulary
    
    Returns:
    parameters -- learned parameters
    """
    
    # Retrieve n_x and n_y from vocab_size
    n_x, n_y = vocab_size, vocab_size
    
    # Initialize parameters
    parameters = initialize_parameters(n_a, n_x, n_y)
    
    # Initialize loss (this is required because we want to smooth our loss, don't worry about it)
    loss = get_initial_loss(vocab_size, dino_names)
    
    # Build list of all dinosaur names (training examples).
    with open("dinos.txt") as f:
        examples = f.readlines()
    examples = [x.lower().strip() for x in examples]
    
    # Shuffle list of all dinosaur names
    shuffle(examples)
    
    # Initialize the hidden state of your LSTM
    a_prev = np.zeros((n_a, 1))
    
    # Optimization loop
    for j in range(num_iterations):
        
        ### START CODE HERE ###
        
        # Use the hint above to define one training example (X,Y) (≈ 2 lines)
        index = j % len(examples)
        X = [None] + [char_to_ix[ch] for ch in examples[index]]
        Y = X[1:] + [char_to_ix['\n']]
        
        # Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters
        # Choose a learning rate of 0.01
        curr_loss, gradients, a_prev = optimize(X, Y, a_prev, parameters)
        
        ### END CODE HERE ###
        
        # Use a latency trick to keep the loss smooth. It happens here to accelerate the training.
        loss = smooth(loss, curr_loss)

        # Every 2000 Iteration, generate "n" characters thanks to sample() to check if the model is learning properly
        if j % 2000 == 0:
            
            print('Iteration: %d, Loss: %f' % (j, loss) + '\n')
            
            # The number of dinosaur names to print
            seed = 0
            for name in range(dino_names):
                
                # Sample indexes and print them
                sampled_indexes = sample(parameters, char_to_ix, seed)
                print_sample(sampled_indexes, ix_to_char)
                
                seed += 1  # To get the same result for grading purposed, increment the seed by one. 
      
            print('\n')
        
    return parameters

生成恐龙名字的效果:

deeplearning.ai——字符级语言模型-恐龙岛_第2张图片

你可能感兴趣的:(NLP,机器学习)