- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 鸿蒙系统下的多线程图像采集与缓冲设计:稳定性与实时性的架构实战
观熵
影像技术全景图谱:架构调优与实战harmonyos架构华为影像Camera
鸿蒙系统下的多线程图像采集与缓冲设计:稳定性与实时性的架构实战关键词:OpenHarmony、CameraKit、多线程采集、图像缓冲队列、图像帧丢失、线程池调度、帧同步机制、缓存池管理摘要:在基于OpenHarmony的图像智能系统中,稳定、高效的图像采集机制是所有后续处理(如目标识别、图像增强、视觉导航等)的基础。随着图像分辨率提高、AI模型数量增加,单线程采集架构在实际部署中易出现帧阻塞、缓
- LabVIEW工业指针仪表检测
LabVIEW开发
LabVIEW开发案例labview深度学习LabVIEW开发案例
用LabVIEW融合深度学习与机器视觉技术,构建适用于复杂工业环境的多类指针式仪表自动检测系统。通过集成品牌硬件与优化算法架构,实现仪表实时定位、图像增强、示数读取全流程自动化,解决传统人工巡检效率低、误差大的问题,满足煤矿、变电站等场景的智能化监测需求。应用场景工业设备监控:煤矿通风设备压力表、变电站电压电流表、集气站流量仪表等圆形指针式设备的实时状态监测。恶劣环境检测:适用于高温、高压、粉尘或
- Python编程:图像增强
倔强老吕
C++与python交互编程pythonopencv计算机视觉图像增强
图像增强图像增强是数字图像处理中的重要技术,旨在改善图像质量或突出图像中的有用信息,为后续的分析和处理提供更好的基础。空间域图像增强灰度变换定义灰度变换是一种点处理(pointprocessing)操作,可表示为:s=T(r)其中:r:输入图像像素的原始灰度值(通常范围[0,L-1],如8位图像为[0,255])s:变换后的输出灰度值T:灰度变换函数核心特性单像素操作:输出值仅取决于对应位置的输入
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)
点云SLAM
图形图像处理深度学习计算机视觉图像分割图像增强CVPR2024人工智能
1、ImageProgress(图像处理)去鬼影GeneratingContentforHDRDeghostingfromFrequencyView去阴影HomoFormer:HomogenizedTransformerforImageShadowRemoval去模糊UnsupervisedBlindImageDeblurringBasedonSelf-EnhancementLatencyCorr
- C#版Halcon:HalconDotNet最详细最全面教程(万字详细总结)
0仰望星空007
C#计算机视觉HalconHalconDotNet
文章目录第一部分:Halcon基础1.Halcon简介Halcon的安装和配置2.Halcon界面和工具图像显示窗口的使用3.图像处理基础图像的表示和存储图像的基本操作4.图像预处理图像增强技术图像去噪方法图像二值化第二部分:Halcon进阶5.形态学操作腐蚀和膨胀开运算和闭运算形态学梯度6.特征提取边缘检测角点检测区域特征第三部分:Halcon高级应用7.模板匹配基于形状的模板匹配基于灰度的模板
- 声波下的眼睛:用Python打造水下目标检测模型实战指南
Echo_Wish
Python算法Python笔记从零开始学Python人工智能python目标检测开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- IEEE RAL 具有高运动性能的仿旗鱼机器人协同运动机制研究
xwz小王子
机器人多模态变形金刚机器人
水下机器人作为军用侦察、监测及攻击装置备受关注,目前传统水下机器人普遍采用螺旋桨作为推进器,但高噪音、高能耗等问题限制了应用范围。鱼类通过自然选择进化出优异的运动性能,特别是在海洋中游动速度快、机动性强的旗鱼。为了探究快速和高机动性的水下运动方式,南京航空航天大学俞志伟副研究员以旗鱼为仿生对象,设计出了可通过背鳍与尾鳍进行协同运动的仿旗鱼机器人并且仿旗鱼机器人具备了优秀的运动性能。该仿旗鱼机器人运
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 学习笔记丨数字信号处理(DSP)的应用——图像处理篇
棱镜研途
学习笔记信号处理图像处理人工智能
DSP在图像处理中的应用:核心技术解析数字信号处理(DSP)是图像处理的核心技术之一,广泛应用于增强、压缩、分析和识别等领域。以下是DSP在图像处理中的关键应用及技术细节:目录图像增强(ImageEnhancement)图像压缩(ImageCompression)特征提取(FeatureExtraction)实时图像处理(Real-TimeProcessing)多模态图像融合(Multimodal
- 使用 Simulink + MATLAB Function Block + Computer Vision Toolbox 实现一个基于多帧图像融合的低光图像增强系统仿真模型
amy_mhd
计算机视觉人工智能
目录图像增强与复原(ImageEnhancement&Restoration)场景实例:多帧图像融合技术用于低光环境下的图像增强一、目标与应用场景✅目标:✅应用场景:二、所需工具和环境三、核心技术原理多帧图像融合流程:四、Simulink实现步骤详解✅步骤1:准备图像数据✅步骤2:创建Simulink模型✅步骤3:添加多帧图像输入模块添加模块:函数代码(getFrames.m):✅步骤4:设计图像
- 水下图像增强(UIE)当前SOTA方法代码分享
石头192
人工智能python水下图像增强图像增强
所有方法均提供源代码和在三个公开数据集(RUIE,LSUI,UIEB)上的复现实验结果,私信可以获得任意水下数据集实验结果。1.U-shape_Transformer_for_Underwater_Image_Enhancement-main2.FUnIE-GAN-master3.Ucolor_final_model_corrected4.UDnet-main5.Water_Net-code_py
- HALCON学习笔记(四)——图像增强
weixin_45482443
HALCON学习笔记计算机视觉
图像增强:有目的的强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同特征之间的差别,抑制不感兴趣特征,改善图像质量,丰富信息量,满足分析需要。1.图像增强的概念和分类图像增强技术基本分为两类:空间域法:包含图像像素的空间,在空间域中,直接对图像进行各种线性或非线性运算,对图像的像素灰度做增强处。分为点运算(作用于像素领域的处理方法,包括灰度变换,直方图修正,
- 计算机视觉与深度学习 | 低照度图像增强算法综述(开源链接,原理,公式,代码)
单北斗SLAMer
低照度图像增强低照度图像处理计算机视觉算法
低照度图像增强算法综述1算法分类与原理1.1传统方法1.2深度学习方法2核心算法详解2.1多尺度Retinex(MSRCR)实现2.2SCI自校准光照学习2.3自适应伽马校正2.4WaveletMamba架构3开源资源与实现3.1主流算法开源库3.2关键代码实现4评估与实验对比4.1客观评价指标4.2算法性能对比5未来研究方向全面综述低照度图像增强算法,包括开源链接、原理、公式和代码实现。主要内容
- erdas图像增强步骤_基于erdas的图像增强处理
weixin_39953618
erdas图像增强步骤
《基于erdas的图像增强处理》由会员分享,可在线阅读,更多相关《基于erdas的图像增强处理(9页珍藏版)》请在人人文库网上搜索。1、图像增强处理l实习目的:掌握常用的图像增强处理的方法l内容:空间、辐射、光谱增强处理的主要方法空间增强:包括卷积增强处理、纹理分析辐射增强:LUT拉伸处理、直方图均衡化处理光谱增强:主成份变换、缨穗变换、色彩变换图像增强处理包括空间、辐射、光谱增强处理,本练习做几
- 图像处理 | 基于matla的多尺度Retinex(MSR)和自适应直方图均衡化(CLAHE)算法联合的低照度图像增强(附代码)
单北斗SLAMer
图像处理算法人工智能低照度图像增强
低照度图像增强1、算法原理2、代码实现3、关键步骤说明4、效果5、扩展建议6、原图7、结果1、算法原理2、代码实现functionenhanced_img=MSR_CLAHE_Enhancement(img_path)%读取图像img=imread(img_path
- nnUNet V2代码——图像增强(三)
w1ndfly
阅读nnUNetV2代码图像增强计算机视觉nnunet机器学习深度学习人工智能图像增强
本文阅读的nnU-NetV2图像增强有亮度调整、对比度调整、低分辨率调整各个类内的各个函数的调用关系见前文nnUNetV2代码——图像增强(一)的BasicTransform类安装batchgeneratorsv2,nnU-NetV2关于图像增强的代码都在这个库中,点击链接,将其clone到本地后,在命令行进入文件夹内,pipinstall-e.即可(注意-e后有个点)。本文目录一Multipli
- nnUNet V2代码——图像增强(一)
w1ndfly
图像增强阅读nnUNetV2代码计算机视觉机器学习深度学习人工智能nnunetnnU-NetV2nnUNet
本文目录nnUNetV2使用的图像增强方法各个图像增强代码1.BasicTransform2.SpatialTransform__init__函数get_parameters函数_apply_to_image函数_apply_to_segmentation函数其余函数nnUNetV2使用的图像增强方法nnUNetV2会依照概率依次对图像应用以下图像增强方法:代码-类名对应图像增强方法Spatial
- 基于C的机器人上位机界面
傅炯耘Shelley
基于C#的机器人上位机界面项目地址:https://gitcode.com/open-source-toolkit/a1546项目简介本项目旨在提供一个简洁高效的C#应用程序,用于实现与下位机的通信和交互。主要功能包括通过UDP协议接收和发送视频流,以及利用TCP协议收发控制指令。此设计特别针对那些需要在C#环境中集成视频传输和远程控制功能的水下机器人或其他自动化设备的开发者。技术亮点双通道通信:
- 【OpenCV】cv::exp函数详解
浩瀚之水_csdn
#OpenCV学习opencv人工智能计算机视觉
cv::exp是OpenCV中用于对矩阵中的每个元素进行自然指数运算(即ex)的函数,常用于图像增强、概率计算或机器学习中的激活函数(如Softmax)。以下是详细解析:函数原型voidcv::exp(InputArraysrc,OutputArraydst);参数说明:src:输入矩阵(CV_32F或CV_64F类型)。dst:输出矩阵,大小和通道数与src相同,数据类型自动匹配为CV_32F或
- 独家首发!低照度环境下YOLOv8的增强方案——从理论到TensorRT部署
向哆哆
YOLO架构yolov8
文章目录引言一、低照度图像增强技术现状1.1传统低照度增强方法局限性1.2深度学习-based方法进展二、Retinexformer网络原理2.1Retinex理论回顾2.2Retinexformer创新架构2.2.1光照感知Transformer2.2.2多尺度Retinex分解2.2.3自适应特征融合三、YOLOv8-Retinexformer实现3.1网络架构修改3.2联合训练策略四、实验与
- 24 年第十四届APMCM亚太数模竞赛浅析
小何数模
数学建模
本次万众瞩目的APMCM亚太地区大学生数学建模赛题已正式出炉,无论是赛题难度还是认可度,该比赛都是数模届的独一档,含金量极高,可以用于综测加分、保研、简历添彩等各方面。考虑到大家解题实属不易,为了帮助大家取得好成绩,在APMCM亚太建模中夺得国奖,下面学长就赛题给出个人浅析,供大家参考!从赛题难度来看,个人认为赛题难度从难到易依次为:D题>A题>B题>C题首先是A题:复杂场景下水下图像增强技术的研
- 图像增强利器:一站式Matlab代码解决方案
岑童嵘
图像增强利器:一站式Matlab代码解决方案增强.zip项目地址:https://gitcode.com/open-source-toolkit/206fb在数字图像处理的世界里,高质量的图像增强技术是通往视觉清晰度的关键之门。今天,我们要向您隆重推荐一个精心打造的开源宝藏——《图像增强Matlab代码合集》,这是一份专为加速研究和学习曲线而生的资源,旨在让每一位图像处理爱好者和专业人员都能轻松掌
- 【图像处理入门】4. 图像增强技术——对比度与亮度的魔法调节
小米玄戒Andrew
图像处理:从入门到专家图像处理算法计算机视觉模式识别几何变换图像增强
摘要图像增强是改善图像视觉效果的核心技术。本文将详解两种基础增强方法:通过直方图均衡化拉伸对比度,以及利用伽马校正调整非线性亮度。结合OpenCV代码实战,学会处理灰度图与彩色图的不同增强策略,理解为何彩色图像需在YUV空间操作亮度通道,为后续滤波与边缘检测奠定预处理基础。一、图像增强:让模糊图像「重获新生」为什么需要图像增强?改善视觉效果:让低对比度图像更清晰(如老照片修复)提升后续处理效果:增
- OpenCV 第7课 图像处理之平滑(一)
嵌入式老牛
树莓派之OpenCVopencv图像处理计算机视觉
1.图像噪声在采集、处理和传输过程中,数字图像可能会受到不同噪声的干扰,从而导致图像质量降低、图像变得模糊、图像特征被淹没,而图像平滑处理就是通过除去噪声来达到图像增强的目的。常见的图像噪声有椒盐噪声、高斯噪声等。1.1椒盐噪声椒盐噪声(Salt-and-pepperNoise)也称为脉冲噪声,是一种随机出现的白点或黑点,具体表现为亮的区域有黑色像素,或是暗的区域有白色像素,又或是两者皆有。下面左
- 工业级应用:Halcon灰度直方图核心技术全解
Ro小陌
视觉Halcon计算机视觉视觉检测信息与通信
Halcon灰度直方图详解一、灰度直方图基础概念定义与功能灰度直方图是统计图像中每个灰度级(0-255)像素出现频率的图形化表示横坐标:灰度级(0为纯黑,255为纯白)纵坐标:对应灰度级的像素数量或频率作用:直观显示图像对比度、亮度分布,辅助阈值分割和图像增强与图像属性的关联图像类型直方图特征示例场景暗图像峰值集中在左侧(低灰度区)夜间监控画面亮图像峰值集中在右侧(高灰度区)强光环境下的工业零件低
- Scratch游戏推荐 | 《敖丙》——水中冒险,挑战极限反应速度!
aa3242243243
游戏青少年编程
作品介绍:《敖丙》是一款充满创意的Scratch游戏,灵感来自《哪吒2》中的经典角色敖丙。游戏中,玩家将控制敖丙在水下进行冒险,穿越障碍物和敌人,考验你的反应速度和操作技巧。作为龙族的继承人,敖丙在水中展现出强大的力量,而你的任务就是帮助他完成这场水下冒险,避开障碍并顺利到达终点!操作说明:←→方向键:控制敖丙的左右移动。↑↓方向键:控制敖丙的上下升降,灵活穿越水中的障碍。空格键:释放特殊技能,帮
- 【GitHub开源项目实战】DeOldify 图像与视频自动上色系统实战详解:GAN 架构、历史影像修复与工程部署路径解析
观熵
GitHub开源项目实战github开源音视频人工智能大模型
开源实战分析系列|DeOldify图像与视频自动上色系统实战详解:GAN架构、历史影像修复与工程部署路径解析关键词图像着色、视频上色、GAN、历史影像修复、自注意力机制、旧照片恢复、深度图像增强、生成对抗网络、PyTorch、开源部署摘要DeOldify是一个专注于黑白照片与视频自动上色的开源深度学习项目,基于增强型GAN(生成对抗网络)架构,并引入自注意力机制(Self-AttentionGAN
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。