机器学习之使用FP-growth算法来高效发现频繁项集

       本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。

一、 概述

1、相关背景

      我们在日常工作生活中,总会在电脑上使用搜索引擎,输入一个单词或单词的一部分,搜索引擎会自动补全查询词项。而系统给出的这些查询推荐词项,是基于使用了一定的算法而得到的。他们通过查看互联网上的用词来查找经常一块出现的词对。显然这就需要一种高效发现频繁集的算法。

        这种算法就是FP-growth算法,是基于上一篇文章提到Apriori算法构建,但在完成相同任务时采用了一些不同的技术,速度比Apriori算法要快。这里的任务是将数据集存储在一个特定的称为FP树的结构之后发现频繁项集或频繁项对,即常在一块出现的元素项的FP集合。

          FP-growth算法只需对数据库进行两次扫描,而Apriori算法对每个潜在的频繁项集都会扫描数据集判定给定模式是否频繁,所以,FP-growth算法速度要高于Apriori算法。当然,在处理小规模数据时没什么问题,但在处理大数据时会产生很大的问题。FP-growth算法只会扫描数据库两次,它发现频繁项集的基本过程如下:

         1)、构建FP树;2)、从FP树中挖掘频繁项集。

       这种算法虽然能够高效发现频繁项集,但它不适用于发现关联规则。

2、 相关概念

      

         FP-groth算法将数据存储在一种称为FP树的紧凑数据结构中。FP代表频繁模式(Frequent Pattern)。一棵FP树与计算机科学中的其他树结构类似,但它是 通过链接(link)连接相似元素,被连起来的元素项被称为一个链表。图12-1给出了一个FP树的例子。

机器学习之使用FP-growth算法来高效发现频繁项集_第1张图片

          同搜索树不同的是,一个元素项可以在FP树中出现多次。FP树会存储项集的出现频率,而每个项集会以路径的方式存储在树中。存在相似元素的集合会共享树的一部分。只有当集合之间完全不同时,树才会分叉。树节点上会给出集合中单个元素及其在序列中出现的次数,路径会给出该序列出现的次数。

            相似项之间的链接称为节点链接(node link),用于快速发现相似项的位置。

            条件模式基:头部链表中的某一点的前缀路径组合就是条件模式基,条件模式基的值取决于末尾节点的值。

            条件FP树:以条件模式基为数据集构造的FP树叫做条件FP树。

3、 FP-growth算法的一般流程

      1)、收集数据: 使用任意方法。

      2)、 准备数据: 由于要存储的是集合,所以需要离散数据。如果要处理连续数据,需要将它们量化为离散值。

      3)、  分析数据: 使用任意方法。

      4)、训练算法:   构建一棵FP树,并对树进行挖掘。

       5)、测试算法:  没有测试过程。

       6)、 使用算法:  可以用于识别经常出现的元素项,从而用于制定政策、推荐元素或进行预测等应用中。

4、相关特性

         1)、优点:

  •                            因为FP-growth算法只需要对数据库进行扫描两遍,所以其运行速度更快,尤其是比Apriori算法快;

  •                            FP树将集合按照支持度降序排列,不同路径如果有相同前缀路径共享存储空间,使得数据得到了压缩处理;

  •                            不需要生成候选集;

         2)、缺点:

  •                               FP-Tree第二次遍历时会存储很多中间的过程值,占用很多内存资源;

  •                              构建FP-Tree是比较昂贵的。

         3)、 适用数据类型:标称型数据(离散型数据)

      

二、工作原理

            

基于数据构建FP树

1、步骤1

    1)、遍历所有的数据集合,计算所有项的支持度;

     2)、丢弃非频繁的项;

     3)、基于支持度降序排序所有的项;

机器学习之使用FP-growth算法来高效发现频繁项集_第2张图片

       4)、所有数据集合按照得到的顺序重新整理;

       5)、重新整理完成后,丢弃每个集合末尾非频繁的项。

      机器学习之使用FP-growth算法来高效发现频繁项集_第3张图片

       2、步骤2

          6)、读取每个集合插入FP树中,同时用一个头部链表数据结构维护不同集合的相同项。


机器学习之使用FP-growth算法来高效发现频繁项集_第4张图片

接下来,我们就得到下面这样一棵FP树。

机器学习之使用FP-growth算法来高效发现频繁项集_第5张图片

这样,我们从FP树中挖掘出频繁项集。

3、步骤3

      1)、对头部链表进行降序排序;

      2)、对头部链表节点从小到大遍历,得到条件模式基,同时获得一个频繁项集。

机器学习之使用FP-growth算法来高效发现频繁项集_第6张图片

如上图,从头部链表 t 节点开始遍历,t 节点加入到频繁项集。找到以 t 节点为结尾的路径如下

机器学习之使用FP-growth算法来高效发现频繁项集_第7张图片

        我们把FP树中的t节点去掉,就得到条件模式基<左边路径,左边是值>[z,x,y,s,t]:2,[z,x,y,r,t]:1 。条件模式基的值取决于末尾节点 t ,因为 t 的出现次数最小,一个频繁项集的支持度由支持度最小的项决定。所以 t 节点的条件模式基的值可以理解为对于以 t 节点为末尾的前缀路径出现次数。

       3)、条件模式基继续构造条件 FP树, 得到频繁项集,和之前的频繁项组合起来,这是一个递归遍历头部链表生成FP树的过程,递归截止条件是生成的FP树的头部链表为空。根据步骤 2 得到的条件模式基 [z,x,y,s,t]:2,[z,x,y,r,t]:1 作为数据集继续构造出一棵FP树,计算支持度,去除非频繁项,集合按照支持度降序排序,重复上面构造FP树的步骤。最后得到下面 t-条件FP树:

       机器学习之使用FP-growth算法来高效发现频繁项集_第8张图片

             接下来,我们根据 t-条件FP树的头部链表进行遍历,从 y 开始。得到频繁项集 ty 。接着又得到 y 的条件模式基,构造出 ty的条件FP树,即 ty-条件FP树。继续遍历ty-条件FP树的头部链表,得到频繁项集 tyx,紧接着又得到频繁项集 tyxz. 然后得到构造tyxz-条件FP树的头部链表是空的,终止遍历。这时,我们得到的频繁项集有 t->ty->tyz->tyzx,这只是一小部分。

三、实现过程

1、构建FP树

        在第二次扫描数据集时会构建一棵树。为构建一棵树,需要一个容器来保存树。

1.1 创建FP树的数据结构

    FP树的类定义如下

   

class treeNode:
    #name存放节点名称
    #count存放计数值
    #nodeLink链接相似元素
    #parent存放父节点
    #children存放子节点
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode      
        self.children = {} 

    def inc(self, numOccur):
        self.count += numOccur
   
    def disp(self, ind=1):
    
        print('  '*ind, self.name, ' ', self.count)
        for child in self.children.values():
     
            child.disp(ind+1)

输入

rootNode = treeNode('pyramid' , 9 , None)
rootNode.children['eye'] = treeNode('eye',13, None)
rootNode.disp()

输出

pyramid   9
     eye   13

输入

rootNode.children['phoenix'] = treeNode('phoenix',3, None)
rootNode.disp()

输出

 pyramid   9
     eye   13
     phoenix   3

  1.2 构建FP树

           除了图12-1给出的FP树之外,还需要一个头指针表来指向给定类型的第一个实例。利用头指针表 ,可以快速访问FP树中一个给定类型的所有元素。图12-2给出了一个头指针表的示意图。

机器学习之使用FP-growth算法来高效发现频繁项集_第9张图片

         这里使用一个字典作为数据结构,来保存头指针表。除了存放指针外,头指针表还可以用来保存FP树中每类元素的总数。
       第一次遍历数据集会获得每个元素项的出现频率。接下来,去掉不满足最小支持度的元素项。再下一步构建FP树。在构建时,读人每个项集并将其添加到一条已经存在的路径中。如果该路径不存在,则创建一条新路径。每个事务就是一个无序集合。假设有集合{z,x,y}和{y,z,r},那么在FP树中,相同项会只表示一次。为了解决此问题,在将集合添加到树之前,需要对每个集合进行排序。排序基于元素项的绝对出现频率来进行。使用图12-2中的头指针节点值,对表12-2中数据进行过滤、重排序后的数据显示在表12-2中。

机器学习之使用FP-growth算法来高效发现频繁项集_第10张图片

        在对事务记录过滤和排序之后,就可以构建FP树了。从空集(符号为∅\emptyset)开始,向其中不断添加频繁项集。过滤、排序后的事务依次添加到树中,如果树中巳存在现有元素,则增加现有元素的值;如果现有元素不存在,则向树添加一个分枝。对表12-2前两条事务进行添加的过程显示在图12-3中。 

机器学习之使用FP-growth算法来高效发现频繁项集_第11张图片

FP构建函数如下:

#create FP-tree from dataset but don't mine
def createTree(dataSet, minSup=1): 
    headerTable = {}
   
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
   
    headerTable = {k:v for k,v in headerTable.items() if v >= minSup}
    freqItemSet = set(headerTable.keys())
  
    if len(freqItemSet) == 0: return None, None  #if no items meet min support -->get out
    for k in headerTable:
        headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link 
  
   
    retTree = treeNode('Null Set', 1, None) 
 
    for tranSet, count in dataSet.items():  
      
        localD = {}
        for item in tranSet:  #put transaction items in order
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        if len(localD) > 0:
        
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
           
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable #return tree and header table

def updateTree(items, inTree, headerTable, count):
    #如果items[0]项在树中,那么增加树种对应节点计数值
    if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count) #incrament count
  
    else:   
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
       
        if headerTable[items[0]][1] == None: #update header table 
            headerTable[items[0]][1] = inTree.children[items[0]]
       
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    
    if len(items) > 1:#call updateTree() with remaining ordered items
        updateTree(items[1::], inTree.children[items[0]], headerTable, count)

#this version does not use recursion        
def updateHeader(nodeToTest, targetNode):  
   
    while (nodeToTest.nodeLink != None):   
        nodeToTest = nodeToTest.nodeLink
  
    nodeToTest.nodeLink = targetNode


输入

d = {'a':2,'c':1,'b':3}
sorted(d.items(),key=lambda p:p[1], reverse=True)

输出

[('b', 3), ('a', 2), ('c', 1)]

输入

[v[0] for v in sorted(d.items(),\
                      key=lambda p:p[1],reverse=True)]

输出 

['b', 'a', 'c']

         简单数据集及数据包装器如下    

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:

        retDict[frozenset(trans)] = 1
    return retDict

输入

simpDat = loadSimpDat()
simpDat

输出 

[['r', 'z', 'h', 'j', 'p'],
 ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
 ['z'],
 ['r', 'x', 'n', 'o', 's'],
 ['y', 'r', 'x', 'z', 'q', 't', 'p'],
 ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]

输入

initSet = createInitSet(simpDat)
initSet

输出

{frozenset({'z'}): 1,
 frozenset({'h', 'j', 'p', 'r', 'z'}): 1,
 frozenset({'s', 't', 'u', 'v', 'w', 'x', 'y', 'z'}): 1,
 frozenset({'n', 'o', 'r', 's', 'x'}): 1,
 frozenset({'p', 'q', 'r', 't', 'x', 'y', 'z'}): 1,
 frozenset({'e', 'm', 'q', 's', 't', 'x', 'y', 'z'}): 1}

输入

myFPTree,myHeaderTab = createTree(iniSet,3)
myFPTree.disp()

输出

Null Set   1
     z   5
       r   1
       x   3
         s   2
           y   2
             t   2
         r   1
           y   1
             t   1
     x   1
       s   1
         r   1

2、 从一棵FP树中挖掘频繁项集  

     我们在有了FP树之后,就可以抽取频繁项集了。当然,这里的思路与Apriori算法大致类似,首先从单元素项集合开始,然后在此基础上逐步构建更大的集合。当然这里将利用FP树来做实现上述过程 ,不再需要原始数据集了。

从FP树中抽取频繁项集的三个基本步骤,详见下方:

1)从FP树中获得条件模式基;

2)利用条件模式基,构建一个条件FP树;

3)迭代重复步骤(1)步骤(2 ) ,直到树包含一个元素项为止。

        接下来重点关注第(1)步,即寻找条件模式基的过程。之后,为每一个条件模式基创建对应的条件FP树。最后需要构造少许代码来封装上述两个函数,并从FP树中获得频繁项集。

    2.1 抽取条件模式基

       首先从上一节发现的巳经保存在头指针表中的单个频繁元素项开始。对于每一个元素项,获得其对应的条件模式基(conditionalpattembase)。条件模式基是以所查找元素项为结尾的路径集合。每一条路径其实都是一条前辍路径(prefixpath)。简而言之,一条前缀路径是介于所査找元素项与树根节点之间的所有内容。

        回到图12-2,符号r的前缀路径是{x,s}{z,x,y}{z}。每一条前缀路径都与一个计数值关联。该计数值等于起始元素项的计数值,该计数值给了每条路径上的数目。表12-3列出了上例当中每一个频繁项的所有前缀路径。



机器学习之使用FP-growth算法来高效发现频繁项集_第12张图片

           为了获得这些前缀的路径,可以对树进行穷举式搜索,直到获得想要的频繁项为止,或者使用一个更有效的方法来加速搜索过程。可以利用先前创建的头指针表来得到一种更有效的方法。头指针表包含相同类型元素链表的起始指针。一旦到达了每一个元素项,就可以上溯这棵树直到根节点为止。
发现以给定元素项结尾的所有路径的函数

#从叶子节点回溯到根节点
def ascendTree(leafNode, prefixPath): 
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)

def findPrefixPath(basePat, treeNode): 
    condPats = {}
    
    while treeNode != None:
        prefixPath = []
        ascendTree(treeNode, prefixPath)
       
        if len(prefixPath) > 1: 
      
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        treeNode = treeNode.nodeLink
    return condPats

输入 

findPrefixPath('x',myHeaderTab['x'][1])

输出

{frozenset({'z'}): 3}

输入

findPrefixPath('z',myHeaderTab['z'][1])

输出  {}输入 

findPrefixPath('r',myHeaderTab['r'][1])

输出

{frozenset({'z'}): 1, frozenset({'s', 'x'}): 1, frozenset({'x', 'z'}): 1}

2.2 创建条件FP树

       对于每一个频繁项,都要创建一棵条件FP树。我们会为z、x以及其他频繁项构建条件树。可以使用刚才发现的条件模式基作为输入数据,并通过相同的建树代码来构建这些树。然后,我们会递归地发现频繁项、发现条件模式基,以及发现另外的条件树。举个例子来说,假定为频繁项测建一个条件FP树,然后对{t,y}、{t,x}、…重复该过程。元素项t的条件FP树的构建过程如图12-4所示。

机器学习之使用FP-growth算法来高效发现频繁项集_第13张图片

       在图12-4中,注意到元素项s以及r是条件模式基的一部分,但是它们并不属于条件FP树。原因是什么?如果讨论s以及r的话,它们难道不是频繁项吗?实际上单独来看它们都是频繁项,但是在t的条件树中,它们却不是频繁的,也就是说,{t,r}及{t,s}是不频繁的。
接下来,对集{t,z}、{t,x}以及{t,y}来挖掘对应的条件树。这会产生更复杂的频繁项集。该过程重复进行,直到条件树中没有元素为止,然后就可以停止了。实现代码相对比较直观,使用一些递归加上之前写的代码就可以完成。
递归查找频繁项集的mineTree的函数,代码如下:

def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
      #这一行与书中不一样在于p[1][0],通过headerTable中项对应的个数来排序
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]
      
    for basePat in bigL:  
   
        newFreqSet = preFix.copy()
      
        newFreqSet.add(basePat)
       
        freqItemList.append(newFreqSet)
       
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
       
        myCondTree, myHead = createTree(condPattBases, minSup)
      
        if myHead != None: #3. mine cond. FP-tree
            print('conditional tree for: ',newFreqSet) 
            myCondTree.disp(1)            
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

输入

freqItems = []
mineTree(myFPTree,myHeaderTab,3,set([]),freqItems)

输出

freqItems

输入

len(freqItems)

输出 18

四、小结

        FP-groth算法是一种用于发现数据集中频繁模式的有效方法。FP-growth利用Apriori原则,执行速度较Apriori算法更快。Apriori算法产生候选项集,然后扫描数据集检查它们是否频繁。而FP-groth算法只扫描数据集两次,这也是它执行速度更快的原因所在。在FP-groth算法中,数据集存储在一个称为FP树的结构中。FP树构建完成后,可以通过查找元素项的条件基及构建条件FP树来发现频繁项集。该过程不断以更多元素作为条件重复进行,直到FP树只包含一个元素为止

         以利用FP-growth算法在多种文本文档中查找频繁单词。频繁项集还有其他一些应用,例如购物交易、医院诊断即大气研究等。

你可能感兴趣的:(机器学习之使用FP-growth算法来高效发现频繁项集)