[实训题目EmoProfo]基于深度学习的表情识别服务搭建(一)

基于深度学习的表情识别服务搭建(一)

文章目录

  • 基于深度学习的表情识别服务搭建(一)
    • 背景
    • 识别服务设计
    • 实现方式的选择
    • dlib性能验证
    • 功能实现
    • 小结

背景

之前我完成了终端和服务端之间交流的全部内容,接下来我需要完成的是服务端识别线程的功能。完成之后,我们的系统应该就剩下前端和优化工作了

识别服务设计

我们称之为服务,是因为它并不能很好的和我们现有的系统无缝拼接,因为这个模块主要由Python实现,但是我们服务端最多只能是PHP+Java,我们的设计是这个样子的:

  • 后台的Java+PHP负责从终端和web端接受音频图片或上传的视频,而识别服务仅仅完成对已有图片的处理
  • 后台和识别服务通过网络方式通信,后台将从用户处接受到的文件名发送给识别服务,识别服务打开这些文件,完成识别,并将识别结果以json的格式发送给后台

有了具体框架,我们还需要定义识别服务的功能:

  • 找出图片中每一张脸的位置
  • 对图片中人脸的朝向进行分析
  • 对人脸的表情进行分析

那么我们就清楚了我们如何去实现这一系列功能

实现方式的选择

经过前期组内的研究,人脸识别应该使用caffe,darknet中虽然有相关的网络,但是darknet的输入只能是彩色图片,而人脸表情特征实际上使用黑白图片就能表述清楚,由于对框架了解不够深入,不知如何做出调整,所以我们先使用功能完善,组内熟悉的Caffe完成表情分类

在寻找脸部方位检测方法的时候我们找到了dlib,这个东西其实是挺不错的,有许多功能,包括人脸检测,头部位置检测,鉴于我们不得不使用它,并考虑到组内其他同学调试方便(如果直接使用darknet的话问题会比较有趣,因为组内所有同学中只有我的电脑有独立显卡,而darknet由于不成熟的原因并不支持传统的CPU加速方法,完成一张图片的检测,GPU只需几十毫秒,而CPU需要80秒),我们决定先完全使用dlib+caffe完成一套系统,darknet过一段时间再考虑

总结一下我们的选择:

  • 人脸检测:darknet(dlib)
  • 头部位置识别:dlib
  • 表情分类:caffe

dlib性能验证

经过我们的研究,dlib中人脸检测使用的是图形学方法,这在光线不均匀的情况下效果极差,表现为一下状态:

[实训题目EmoProfo]基于深度学习的表情识别服务搭建(一)_第1张图片

[实训题目EmoProfo]基于深度学习的表情识别服务搭建(一)_第2张图片

这样可以很明显的看出问题,但是基于深度学习方法的darknet似乎没有这样的烦恼

[实训题目EmoProfo]基于深度学习的表情识别服务搭建(一)_第3张图片

原本darknet的人脸检测框的没有这么方正,我对框选算法进行了一下修改,具体改动将在后续接入darknet的文章中详细介绍

功能实现

类定义:

class HPD():
    # 3D facial model coordinates
    landmarks_3d_list = [
        np.array([
            [0.000, 0.000, 0.000],  # Nose tip
            [0.000, -8.250, -1.625],  # Chin
            [-5.625, 4.250, -3.375],  # Left eye left corner
            [5.625, 4.250, -3.375],  # Right eye right corner
            [-3.750, -3.750, -3.125],  # Left Mouth corner
            [3.750, -3.750, -3.125]  # Right mouth corner
        ], dtype=np.double),
        np.array([
            [0.000000, 0.000000, 6.763430],  # 52 nose bottom edge
            [6.825897, 6.760612, 4.402142],  # 33 left brow left corner
            [1.330353, 7.122144, 6.903745],  # 29 left brow right corner
            [-1.330353, 7.122144, 6.903745],  # 34 right brow left corner
            [-6.825897, 6.760612, 4.402142],  # 38 right brow right corner
            [5.311432, 5.485328, 3.987654],  # 13 left eye left corner
            [1.789930, 5.393625, 4.413414],  # 17 left eye right corner
            [-1.789930, 5.393625, 4.413414],  # 25 right eye left corner
            [-5.311432, 5.485328, 3.987654],  # 21 right eye right corner
            [2.005628, 1.409845, 6.165652],  # 55 nose left corner
            [-2.005628, 1.409845, 6.165652],  # 49 nose right corner
            [2.774015, -2.080775, 5.048531],  # 43 mouth left corner
            [-2.774015, -2.080775, 5.048531],  # 39 mouth right corner
            [0.000000, -3.116408, 6.097667],  # 45 mouth central bottom corner
            [0.000000, -7.415691, 4.070434]  # 6 chin corner
        ], dtype=np.double),
        np.array([
            [0.000000, 0.000000, 6.763430],  # 52 nose bottom edge
            [5.311432, 5.485328, 3.987654],  # 13 left eye left corner
            [1.789930, 5.393625, 4.413414],  # 17 left eye right corner
            [-1.789930, 5.393625, 4.413414],  # 25 right eye left corner
            [-5.311432, 5.485328, 3.987654]  # 21 right eye right corner
        ], dtype=np.double)
    ]

    # 2d facial landmark list
    lm_2d_index_list = [
        [30, 8, 36, 45, 48, 54],
        [33, 17, 21, 22, 26, 36, 39, 42, 45, 31, 35, 48, 54, 57, 8],  # 14 points
        [33, 36, 39, 42, 45]  # 5 points
    ]

    # caffe 模型的各种路径
    caffe_model = 'face/myfacialnet_iter_59000.caffemodel'
    caffe_lable = 'face/labels.txt'
    caffe_deploy = 'face/deploy.prototxt'
    caffe_mean = 'face/mean.binaryproto'

    def __init__(self, lm_type=1, predictor="model/shape_predictor_68_face_landmarks.dat", verbose=True):
        self.bbox_detector = dlib.get_frontal_face_detector()
        self.landmark_predictor = dlib.shape_predictor(predictor)

        self.lm_2d_index = self.lm_2d_index_list[lm_type]
        self.landmarks_3d = self.landmarks_3d_list[lm_type]

        self.v = verbose

        # caffe 模型初始化一下
        self.net = caffe.Net(self.caffe_deploy, self.caffe_model, caffe.TEST)
        # 图片预处理设置
        self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})  # 设定图片的shape格式(1,1,42,42)
        self.transformer.set_transpose('data', (2, 0, 1))  # 改变维度的顺序,由原始图片(42,42,1)变为(1,42,42)
        self.transformer.set_raw_scale('data', 255)  # 缩放到【0,255】之间
        #加载均值文件
        proto_data = open(self.caffe_mean, "rb").read()
        a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
        m = caffe.io.blobproto_to_array(a)[0]
        self.transformer.set_mean('data', m.mean(1).mean(1))    #减去均值,前面训练模型时没有减均值,这儿就不用
        self.net.blobs['data'].reshape(1, 1, 42, 42)

        caffe.set_mode_cpu()

    def class2np(self, landmarks):
        coords = []
        for i in self.lm_2d_index:
            coords += [[landmarks.part(i).x, landmarks.part(i).y]]
        return np.array(coords).astype(np.int)

    def getLandmark(self, im):
        # Detect bounding boxes of faces
        if im is not None:
            rects = self.bbox_detector(im, 1)
        else:
            rects = []
        # make this an larger array

        landmarks_2ds = []
        if len(rects) <= 0:
            return None, None

        for rect in rects:
            # Detect landmark of first face
            landmarks_2d = self.landmark_predictor(im, rect)  # 这里获得特征点的集合,我们需要这个结果来切脸

            # Choose specific landmarks corresponding to 3D facial model
            ## and i decided to move it to another place!! --Tecelecta

            landmarks_2ds.append(landmarks_2d)

        return landmarks_2ds, rects

    def getHeadpose(self, im, landmarks_2d, verbose=False):
        h, w, c = im.shape
        f = w  # column size = x axis length (focal length)
        u0, v0 = w / 2, h / 2  # center of image plane
        camera_matrix = np.array(
            [[f, 0, u0],
             [0, f, v0],
             [0, 0, 1]], dtype=np.double
        )

        # Assuming no lens distortion
        dist_coeffs = np.zeros((4, 1))

        # Find rotation, translation
        (success, rotation_vector, translation_vector) = cv2.solvePnP(self.landmarks_3d, landmarks_2d, camera_matrix,
                                                                      dist_coeffs)

        if verbose:
            print("Camera Matrix:\n {0}".format(camera_matrix))
            print("Distortion Coefficients:\n {0}".format(dist_coeffs))
            print("Rotation Vector:\n {0}".format(rotation_vector))
            print("Translation Vector:\n {0}".format(translation_vector))

        return rotation_vector, translation_vector, camera_matrix, dist_coeffs

    # rotation vector to euler angles
    def getAngles(self, rvec, tvec):
        rmat = cv2.Rodrigues(rvec)[0]
        P = np.hstack((rmat, tvec))  # projection matrix [R | t]
        degrees = -cv2.decomposeProjectionMatrix(P)[6]
        rx, ry, rz = degrees[:, 0]
        return [rx, ry, rz]

    # return image and angles
    def processImage(self, im, draw=True):

        faces_dets = dlib.full_object_detections()
        prob_list = []
        draws = []
        all_angles = []

        # landmark Detection
        im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
        landmarks_2ds, bboxs = self.getLandmark(im_gray)  # 这里直接使用这个数组

        # if no face deteced, return original image
        if bboxs is None:
            return im, None

        for i in range(len(bboxs)):
            # Headpose Detection
            landmarks_2d = landmarks_2ds[i]
            bbox = bboxs[i]

            faces_dets.append(landmarks_2d)
            landmarks_2d = self.class2np(landmarks_2d)
            landmarks_2d = landmarks_2d.astype(np.double)

            rvec, tvec, cm, dc = self.getHeadpose(im, landmarks_2d)

            angles = self.getAngles(rvec, tvec)
            all_angles.append(angles)
            if draw:
                draws.append(Draw(im, angles, bbox, landmarks_2d, rvec, tvec, cm, dc, b=10.0))

        images = dlib.get_face_chips(im, faces_dets, size=320)
        # 接入caffe完成分类

        for face in images:
            net_input = cv2ski(face)
            net_input = self.transformer.preprocess("data",net_input)
            self.net.blobs['data'].data[...] = net_input
            self.net.forward()
            prob_list.append(self.net.blobs['prob'].data[0].flatten())

        for d in draws:
            im = d.drawAll()

        return im, bboxs, all_angles, prob_list


    def processBatch(self, fileNames, in_dir, out_dir):
        if in_dir[-1] != '/': in_dir += '/'
        if out_dir[-1] != '/': out_dir += '/'
        batch_json = []
        for fn in fileNames:
            im = cv2.imread(in_dir + fn)
            im, bboxes, angles, probs = self.processImage(im)
            cv2.imwrite(out_dir + fn, im)
            pic_json = []
            for i in range(len(bboxes)):
                pic_json.append({
                    "x" : (bboxes[i].left() + bboxes[i].right()) / 2,
                    "y" : (bboxes[i].top() + bboxes[i].bottom()) / 2,
                    "rx" : angles[i][0].astype("float"),
                    "ry" : angles[i][1].astype("float"),
                    "rz" : angles[i][2].astype("float"),
                    "angry" : probs[i][0].astype("float"),
                    "digust" : probs[i][1].astype("float"),
                    "fear" : probs[i][2].astype("float"),
                    "happy" : probs[i][3].astype("float"),
                    "sad" : probs[i][4].astype("float")
                })
            batch_json.append(pic_json)
        return batch_json

这个类的实现过程中我们参考了已经有的项目,对它进行了解读和完善,最终得到这个类,其中核心的方法是processImage,它首先完成了人脸的检测,然后使用自己支持的深度学习算法完成了landmark的标定,之后将画出的人脸交给caffe模型完成表情分类

辅助函数定义:

def cv2ski(cv_mat):
    '''
    将脸从cv2转换成ski的格式
    :param cv_mat:
    :return:
    '''
    # rgbgr & normalize
    ski_mat = np.zeros((48,48,1), dtype="float32")
    cv_mat = cv2.cvtColor(cv_mat, cv2.COLOR_BGR2GRAY, dstCn=1)
    cv_mat = cv2.resize(cv_mat, (48, 48), interpolation=cv2.INTER_LINEAR) / 255.
    ski_mat = cv_mat[:,:,np.newaxis]

    #cv2.imwrite("middle.jpg", cv_mat)
   # cv2.imshow("middle", ski_mat)
    #cv2.waitKey(0)
    return ski_mat.astype("float32")

正如注释描述的一样,这个函数完成的是格式转换功能,因为caffe输入需要的格式是skimage.io获得的,而我们整体的处理过程使用opencv完成的,这就要求我们完成格式转换另外,从原图上截下的脸是彩色的,我们还需要完成色域转换

执行文件:

# -- encoding:utf-8 --
#import landmarkPredict as headpose
import socket
import hpd
import json

LOCALHOST = "127.0.0.1"
sock = None

def sockInit(port):
    '''
    接收文件名,一次一个batch
    :param port: 接收使用的port,字符串格式!
    :return:
    '''
    global sock
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind((LOCALHOST, port))
    sock.listen(1)
    return

def recvFileName(conn):
    '''
    利用已经建立的连接完成一批文件的接收
    :param conn:
    :return: 一堆文件名
    '''
    data = conn.recv(4096)
    file_name = data.split('\n')
    return file_name[:len(file_name) - 1]

def sendJson(conn, jList):
    '''
    将识别返回的结果发回请求端
    :param conn: 之前与请求端建立的连接
    :param jList: 返回的一批图片的识别结果
    :return: shi
    '''
    for pic_json in jList:
        conn.send(json.dumps(pic_json))
        print("---finish sending res of 1 pic---")
        print(pic_json)



if __name__ == "__main__":
    sockInit(10101)
    headpose = hpd.HPD()
    while 1:
        conn, addr = sock.accept()
        print("Accpeting conn from {}".format(addr))
        batch_name = recvFileName(conn)
        res = headpose.processBatch(batch_name, "/srv/ftp/pic", "/srv/ftp/res")#这里指定正确的路径就可以完成任务
        sendJson(conn,res)

依旧是首先定义基本的网络传输函数,接受文件名,并完成从服务端接收所有json对象,并转换成字符串发送的功能

小结

这一部分还会被进一步完善,上面我们提到,dlib的性能存在问题,接下来我们会将darknet接入,着手解决这些问题

你可能感兴趣的:(项目实训)