TensorFlow北大公开课学习笔记6.2-制作数据集

前一篇,解决了如何对图片进行预测,且输出结果,本次要解决的是如下: 

今天学习:

tfrecords文件,生成tfrecords文件,解析terecords文件

反向传播文件修改图片标签获取的接口,关键操作是利用多线程提高图片和标签的批获取效率,方法用:将批获取操作放到线程协调器开启和关闭之间。

在运行mnist_geberateeds.py时我觉得对于这个结果有点意外

TensorFlow北大公开课学习笔记6.2-制作数据集_第1张图片

TensorFlow北大公开课学习笔记6.2-制作数据集_第2张图片

TensorFlow北大公开课学习笔记6.2-制作数据集_第3张图片

读入后,

# 用空格分割每行的内容
value = content.split()

也不应该是

value是等于['8876_3.jpg', '3'],也就是说value[0],value[1]等于,8876_3.jpg,3,大大的问号????

  答案:测试发现,在这个制作的时候,应该是加了\n,所以才会出现如下:

TensorFlow北大公开课学习笔记6.2-制作数据集_第4张图片

所以没毛病! 

但是经过下面的改变,则会发现:

TensorFlow北大公开课学习笔记6.2-制作数据集_第5张图片TensorFlow北大公开课学习笔记6.2-制作数据集_第6张图片

 

TensorFlow北大公开课学习笔记6.2-制作数据集_第7张图片

所以哈,这个应该是在制作txt时,格式为:图片名字 标签\n ,只是我们在txt文件中看不到而已,要print才看到。

TensorFlow北大公开课学习笔记6.2-制作数据集_第8张图片

# coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import os

image_train_path = './mnist_data_jpg/mnist_train_jpg_60000/'
label_train_path = './mnist_data_jpg/mnist_train_jpg_60000.txt'
tfRecord_train = './data/mnist_train.tfrecords'
image_test_path = './mnist_data_jpg/mnist_test_jpg_10000/'
label_test_path = './mnist_data_jpg/mnist_test_jpg_10000.txt'
tfRecord_test = './data/mnist_test.tfrecords'
data_path = './data'
resize_height = 28
resize_width = 28


# 生成tfrecords文件
def write_tfRecord(tfRecordName, image_path, label_path):
    # 新建一个writer
    writer = tf.python_io.TFRecordWriter(tfRecordName)
    # 为了显示进度,制作一个计数器
    num_pic = 0
    # 以读的形式打开标签文件
    f = open(label_path, 'r')
    # 读取整个文件的内容
    contents = f.readlines()
    # 关闭文件
    f.close()
    # 循环遍历每张图和标签
    for content in contents:
        # 用空格分割每行的内容
        value = content.split()
        print(value)
        img_path = image_path + value[0]
        img = Image.open(img_path)

        # 将图片转换为二进制数据
        img_raw = img.tobytes()
        # 把label的每个元素赋值为0
        labels = [0] * 10
        # 把label的标签位赋值为1
        labels[int(value[1])] = 1

        # 把每张图片和标签封装到example中
        example = tf.train.Example(features=tf.train.Features(feature={
            'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
        }))
        # 把example进行序列化
        writer.write(example.SerializeToString())
        # 没保存一张图片进行加1
        num_pic += 1
        print("the number of picture:", num_pic)
    # 关闭writer
    writer.close()
    print("write tfrecord successful")


def generate_tfRecord():
    # 判断保存路径是否存在
    isExists = os.path.exists(data_path)
    if not isExists:
        os.makedirs(data_path)
        print('The directory was created successfully')
    else:
        print('directory already exists')
    write_tfRecord(tfRecord_train, image_train_path, label_train_path)
    write_tfRecord(tfRecord_test, image_test_path, label_test_path)


# 解析tfrecords文件
def read_tfRecord(tfRecord_path):
    # 该函数会生成一个先入先出的队列,文件阅读器会使用它来读取数据
    filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
    # 新建一个reader
    reader = tf.TFRecordReader()
    # 把读出的每个样本保存在serialized_example中进行解序列化,标签和图片的键名应该和制作tfrecords的键名相同,其中标签给出几分类。
    _, serialized_example = reader.read(filename_queue)
    # 将tf.train.Example协议内存块(protocol buffer)解析为张量
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([10], tf.int64),
                                           'img_raw': tf.FixedLenFeature([], tf.string)
                                       })
    # 将img_raw字符串转换为8位无符号整型
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    # 将形状变为一行784列
    img.set_shape([784])
    # 变成0到1之间的浮点数
    img = tf.cast(img, tf.float32) * (1. / 255)
    # 把标签也变成浮点数形式
    label = tf.cast(features['label'], tf.float32)
    # 返回图片和标签
    return img, label

# 读入tfrecord文件,需要指定num和isTrain
def get_tfrecord(num, isTrain=True):
    if isTrain:
        tfRecord_path = tfRecord_train
    else:
        tfRecord_path = tfRecord_test
    img, label = read_tfRecord(tfRecord_path)
    # 随机读取一个batch的数据(图片和标签)
    # 这是使用两个线程num_threads=2,容量是1000,从数据中打乱读取1000,但min_after_dequeue少于700时从数据中读取然后填充到1000中
    img_batch, label_batch = tf.train.shuffle_batch([img, label],
                                                    batch_size=num,
                                                    num_threads=2,
                                                    capacity=1000,
                                                    min_after_dequeue=700)
    # 返回的图片和标签为随机抽取的batch_size组
    return img_batch, label_batch


def main():
    generate_tfRecord()


if __name__ == '__main__':
    main()

制作数据集,实现特定应用:
1、数据集生成读取文件(mnist_generateds.py)
√tfrecords 文件
1) tfrecords: 是一种二进制文件,可先将图片和标签制作成该格式的文件。
使用 tfrecords 进行数据读取,会提高内存利用率。
2) tf.train.Example: 用来存储训练数据。 训练数据的特征用键值对的形式表
示。
如:‘img_raw ’ :值 ‘label ’ :值 值是 Byteslist/FloatList/Int64List

3) SerializeToString( ): 把数据序列化成字符串存储。
√生成 tfrecords 文件
TensorFlow北大公开课学习笔记6.2-制作数据集_第9张图片

注解:
1) writer = tf.python_io.TFRecordWriter(tfRecordName) #新建一个 writer
2) for 循环遍历每张图和标签
3) example = tf.train.Example(features=tf.train.Features(feature={
'img_raw':tf.train.Feature(bytes_list=tf.train.BytesList(value=[
img_raw])),
'label':tf.train.Feature(int64_list=tf.train.Int64List(value=lab
els))})) # 把每张图片和标签封装到 example 中
4) writer.write(example.SerializeToString()) # 把 example 进行序列化
5) writer.close() #关闭 writer

 

# coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
import mnist_generateds  # 1

BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
# 手动给出训练的总样本数6万
train_num_examples = 60000  # 2


def backward():
    x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
    y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
    y = mnist_forward.forward(x, REGULARIZER)
    global_step = tf.Variable(0, trainable=False)

    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cem = tf.reduce_mean(ce)
    loss = cem + tf.add_n(tf.get_collection('losses'))

    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        train_num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

    saver = tf.train.Saver()
    # 一次批获取 batch_size张图片和标签
    img_batch, label_batch = mnist_generateds.get_tfrecord(BATCH_SIZE, isTrain=True)  # 3

    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)

        # 利用多线程提高图片和标签的批获取效率
        coord = tf.train.Coordinator()  # 4
        # 启动输入队列的线程
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)  # 5

        for i in range(STEPS):
            # 执行图片和标签的批获取
            xs, ys = sess.run([img_batch, label_batch])  # 6
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
            if i % 1000 == 0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
        # 关闭线程协调器
        coord.request_stop()  # 7
        coord.join(threads)  # 8


def main():
    backward()  # 9


if __name__ == '__main__':
    main()
# coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
import mnist_generateds

TEST_INTERVAL_SECS = 5
# 手动给出测试的总样本数1万
TEST_NUM = 10000  # 1


def test():
    with tf.Graph().as_default() as g:
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
        y = mnist_forward.forward(x, None)

        ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)

        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        # 用函数get_tfrecord替换读取所有测试集1万张图片
        img_batch, label_batch = mnist_generateds.get_tfrecord(TEST_NUM, isTrain=False)  # 2

        while True:
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]

                    # 利用多线程提高图片和标签的批获取效率
                    coord = tf.train.Coordinator()  # 3
                    # 启动输入队列的线程
                    threads = tf.train.start_queue_runners(sess=sess, coord=coord)  # 4

                    # 执行图片和标签的批获取
                    xs, ys = sess.run([img_batch, label_batch])  # 5

                    accuracy_score = sess.run(accuracy, feed_dict={x: xs, y_: ys})

                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                    # 关闭线程协调器
                    coord.request_stop()  # 6
                    coord.join(threads)  # 7

                else:
                    print('No checkpoint file found')
                    return
            # 定义程序循环的间隔时间是5s
            time.sleep(TEST_INTERVAL_SECS)


def main():
    test()  # 8


if __name__ == '__main__':
    main()

 

# coding:utf-8
# 1前向传播过程
import tensorflow as tf

# 网络输入节点为784个(代表每张输入图片的像素个数)
INPUT_NODE = 784
# 输出节点为10个(表示输出为数字0-9的十分类)
OUTPUT_NODE = 10
# 隐藏层节点500个
LAYER1_NODE = 500


def get_weight(shape, regularizer):
    # 参数满足截断正态分布,并使用正则化,
    w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
    # w = tf.Variable(tf.random_normal(shape,stddev=0.1))
    # 将每个参数的正则化损失加到总损失中
    if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w


def get_bias(shape):
    # 初始化的一维数组,初始化值为全 0
    b = tf.Variable(tf.zeros(shape))
    return b


def forward(x, regularizer):
    # 由输入层到隐藏层的参数w1形状为[784,500]
    w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
    # 由输入层到隐藏的偏置b1形状为长度500的一维数组,
    b1 = get_bias([LAYER1_NODE])
    # 前向传播结构第一层为输入 x与参数 w1矩阵相乘加上偏置 b1 ,再经过relu函数 ,得到隐藏层输出 y1。
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
    # 由隐藏层到输出层的参数w2形状为[500,10]
    w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
    # 由隐藏层到输出的偏置b2形状为长度10的一维数组
    b2 = get_bias([OUTPUT_NODE])
    # 前向传播结构第二层为隐藏输出 y1与参 数 w2 矩阵相乘加上偏置 矩阵相乘加上偏置 b2,得到输出 y。
    # 由于输出 。由于输出 y要经过softmax oftmax 函数,使其符合概率分布,故输出y不经过 relu函数
    y = tf.matmul(y1, w2) + b2
    return y
# coding:utf-8

import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward


def restore_model(testPicArr):
    # 利用tf.Graph()复现之前定义的计算图
    with tf.Graph().as_default() as tg:
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        # 调用mnist_forward文件中的前向传播过程forword()函数
        y = mnist_forward.forward(x, None)
        # 得到概率最大的预测值
        preValue = tf.argmax(y, 1)

        # 实例化具有滑动平均的saver对象
        variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        with tf.Session() as sess:
            # 通过ckpt获取最新保存的模型
            ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

                preValue = sess.run(preValue, feed_dict={x: testPicArr})
                return preValue
            else:
                print("No checkpoint file found")
                return -1


# 预处理,包括resize,转变灰度图,二值化
def pre_pic(picName):
    img = Image.open(picName)
    reIm = img.resize((28, 28), Image.ANTIALIAS)
    im_arr = np.array(reIm.convert('L'))
    # 对图片做二值化处理(这样以滤掉噪声,另外调试中可适当调节阈值)
    threshold = 50
    # 模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色。
    for i in range(28):
        for j in range(28):
            im_arr[i][j] = 255 - im_arr[i][j]
            if (im_arr[i][j] < threshold):
                im_arr[i][j] = 0
            else:
                im_arr[i][j] = 255
    # 把图片形状拉成1行784列,并把值变为浮点型(因为要求像素点是0-1 之间的浮点数)
    nm_arr = im_arr.reshape([1, 784])
    nm_arr = nm_arr.astype(np.float32)
    # 接着让现有的RGB图从0-255之间的数变为0-1之间的浮点数
    img_ready = np.multiply(nm_arr, 1.0 / 255.0)

    return img_ready


def application():
    # 输入要识别的几张图片
    testNum = eval(input("input the number of test pictures:"))
    for i in range(testNum):
        # 给出待识别图片的路径和名称
        testPic = input("the path of test picture:")
        # 图片预处理
        testPicArr = pre_pic(testPic)
        # 获取预测结果
        preValue = restore_model(testPicArr)
        print("The prediction number is:", preValue)


def main():
    application()


if __name__ == '__main__':
    main()

 

你可能感兴趣的:(深度学习,Tensorflow,python)