目录
torch.utils.data.dataset这样的抽象类可以用来创建数据集。学过面向对象的应该清楚,抽象类不能实例化,因此我们需要构造这个抽象类的子类来创建数据集,并且我们还可以定义自己的继承和重写方法。
这其中最重要的就是**len和getitem这两个函数,前者给出数据集的大小**,后者是用于查找数据和标签。
torch.utils.data.DataLoader是一个迭代器,方便我们去多线程地读取数据,并且可以实现batch以及shuffle的读取等。
import torch.utils.data.dataset as Dataset
import numpy as np
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
(2)返回数据集大小:
#返回数据集大小
def __len__(self):
return len(self.Data)
(3)得到数据内容和标签:
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.Tensor(self.Label[index])
return data, label
(4)最终这个子类定义为:
import torch
import torch.utils.data.dataset as Dataset
import numpy as np
#创建子类
class subDataset(Dataset.Dataset):
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
#返回数据集大小
def __len__(self):
return len(self.Data)
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.Tensor(self.Label[index])
return data, label
值得注意的地方是:
class subDataset(Dataset.Dataset):
如果只写了Dataset而不是Dataset.Dataset,则会报错:module.init() takes at most 2 arguments (3 given)
因为Dataset是module模块,不是class类,所以需要调用module里的class才行,因此是Dataset.Dataset!
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
4. 声明主函数,主函数创建一个子类的对象,传入Data和Label参数:
if __name__ == '__main__':
dataset = subDataset(Data, Label)
print(dataset)
print('dataset大小为:', dataset.__len__())
print(dataset.__getitem__(0))
print(dataset[0])
代码变为;
import torch
import torch.utils.data.dataset as Dataset
import numpy as np
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#创建子类
class subDataset(Dataset.Dataset):
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
#返回数据集大小
def __len__(self):
return len(self.Data)
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.IntTensor(self.Label[index])
return data, label
if __name__ == '__main__':
dataset = subDataset(Data, Label)
print(dataset)
print('dataset大小为:', dataset.__len__())
print(dataset.__getitem__(0))
print(dataset[0])
import torch.utils.data.dataloader as DataLoader
#创建DataLoader迭代器
dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 4)
for step, (data, label) in enumerate(dataloader):
print('step is :', step)
# data, label = item
print('data is {}, label is {}'.format(data, label))
for i, item in enumerate(dataloader):
print('i:', i)
data, label = item
print('data:', data)
print('label:', label)
import torch
import torch.utils.data.dataset as Dataset
import torch.utils.data.dataloader as DataLoader
import numpy as np
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#创建子类
class subDataset(Dataset.Dataset):
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
#返回数据集大小
def __len__(self):
return len(self.Data)
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.IntTensor(self.Label[index])
return data, label
if __name__ == '__main__':
dataset = subDataset(Data, Label)
print(dataset)
print('dataset大小为:', dataset.__len__())
print(dataset.__getitem__(0))
print(dataset[0])
#创建DataLoader迭代器
dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 4)
for i, item in enumerate(dataloader):
print('i:', i)
data, label = item
print('data:', data)
print('label:', label)
结果为:
可以看到两个对象,因为对象数*batch_size就是数据集的大小__len__
if torch.cuda.is_available():
data = data.cuda()
label = label.cuda()
代码变为:
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.IntTensor(self.Label[index])
if torch.cuda.is_available():
data = data.cuda()
label = label.cuda()
return data, label
THCudaCheck FATIHCudaCheck FAIL file=Lc:\n efwile=-builder_3\win-whce:el\\pnyteorwch-\tborucihl\cdsrec\rge_3n\weirinc\StorageSharing.cpp-w helienl\epy=t2or3ch1\ toercrhr\cosrrc=\g71e ne:r ioc\pSteorartagieSohanr niotng .cspupppo line=231 error=rt7e1d
: operProcess Process-2:
ation not supportedTraceback (most recent call last):
File "D:\Anaconda3\lib\multiprocessing\process.py", line 258, in _bootstrap
self.run()
File "D:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 110, in _worker_loop
data_queue.put((idx, samples))
Process Process-1:
File "D:\Anaconda3\lib\multiprocessing\queues.py", line 341, in put
obj = _ForkingPickler.dumps(obj)
File "D:\Anaconda3\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
File "D:\Anaconda3\lib\site-packages\torch\multiprocessing\reductions.py", line 109, in reduce_tensor
(device, handle, storage_size, storage_offset) = storage._share_cuda_()
RuntimeError: cuda runtime error (71) : operation not supported at c:\new-builder_3\win-wheel\pytorch\torch\csrc\generic\StorageSharing.cpp:231
Traceback (most recent call last):
File "D:\Anaconda3\lib\multiprocessing\process.py", line 258, in _bootstrap
self.run()
File "D:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 110, in _worker_loop
data_queue.put((idx, samples))
File "D:\Anaconda3\lib\multiprocessing\queues.py", line 341, in put
obj = _ForkingPickler.dumps(obj)
File "D:\Anaconda3\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
File "D:\Anaconda3\lib\site-packages\torch\multiprocessing\reductions.py", line 109, in reduce_tensor
(device, handle, storage_size, storage_offset) = storage._share_cuda_()
RuntimeError: cuda runtime error (71) : operation not supported at c:\new-builder_3\win-wheel\pytorch\torch\csrc\generic\StorageSharing.cpp:231
(1)只需要将num_workers改成0即可:
dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 0)
代码变为:
import torch
import torch.utils.data.dataset as Dataset
import torch.utils.data.dataloader as DataLoader
import numpy as np
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#创建子类
class subDataset(Dataset.Dataset):
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
#返回数据集大小
def __len__(self):
return len(self.Data)
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.IntTensor(self.Label[index])
if torch.cuda.is_available():
data = data.cuda()
label = label.cuda()
return data, label
if __name__ == '__main__':
dataset = subDataset(Data, Label)
print(dataset)
print('dataset大小为:', dataset.__len__())
print(dataset.__getitem__(0))
print(dataset[0][0])
#创建DataLoader迭代器
dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 0)
for i, item in enumerate(dataloader):
print('i:', i)
data, label = item
print('data:', data)
print('label:', label)
(2)把Tensor放到GPU上的操作放在DataLoader之后,即删除__getitem__函数里的下面内容
if torch.cuda.is_available():
data = data.cuda()
label = label.cuda()
并在主函数的for循环里添加删除的语句,代码变为
import torch
import torch.utils.data.dataset as Dataset
import torch.utils.data.dataloader as DataLoader
import numpy as np
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#创建子类
class subDataset(Dataset.Dataset):
#初始化,定义数据内容和标签
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
#返回数据集大小
def __len__(self):
return len(self.Data)
#得到数据内容和标签
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.IntTensor(self.Label[index])
return data, label
if __name__ == '__main__':
dataset = subDataset(Data, Label)
print(dataset)
print('dataset大小为:', dataset.__len__())
print(dataset.__getitem__(0))
print(dataset[0][0])
#创建DataLoader迭代器
dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 8)
for i, item in enumerate(dataloader):
print('i:', i)
data, label = item
if torch.cuda.is_available():
data = data.cuda()
label = label.cuda()
print('data:', data)
print('label:', label)
Dataset是一个抽象类,需要派生一个子类构造数据集,需要改写的方法有__init__,__getitem__等。
DataLoader是一个迭代器,方便我们访问Dataset里的对象,值得注意的num_workers的参数设置:如果放在cpu上跑,可以不管,但是放在GPU上则需要设置为0;或者在DataLoader操作之后将Tensor放在GPU上。
数据和标签是tuple元组的形式,使用Dataloader然后使用enumerate函数访问它们。