Spark-Task not serializable错误解析

在学习SparkStreaming的时候偶然出现的一个问题,先看下面一段代码:

import org.apache.log4j.{Level, Logger}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
  * Created by Administrator on 2017/11/6.
  */
object ForEachTest {
   val checkpointDirectory="hdfs://hadoop1:9000/streamingchekpoint4"
  def functionToCreateContext(): StreamingContext = {
    //程序入口
    val conf = new  SparkConf().setMaster("local[2]").setAppName(s"${this.getClass.getSimpleName}")
    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")
    val ssc = new StreamingContext(sc,Seconds(1))
    //数据的输入
    val dStream = ssc.socketTextStream("192.168.32.10",9999)
    //数据的处理
    val resultDStream = dStream.flatMap(_.split(","))
      .map((_, 1))
      .updateStateByKey((values: Seq[Int], valuesState: Option[Int]) => {
        val currentCount = values.sum
        val lastCount = valuesState.getOrElse(0)
        Some(currentCount + lastCount)
      })
    //程序的输出
    resultDStream.foreachRDD( rdd  =>{
      //Driver
        val jdbcCoon = MysqlPool.getJdbcCoon()
        val statement = jdbcCoon.createStatement()
      rdd.foreachPartition( partition  =>{
        //Executor
        partition.foreach( recored  =>{
          //Executor
           val word = recored._1
           val count = recored._2
          val sql=s"insert into  aura.1706wordcount values(now(),'${word}',${count})"
          statement.execute(sql)
        })
        MysqlPool.releaseConn(jdbcCoon)
      })
    })
    //设置检查点
    ssc.checkpoint(checkpointDirectory)
    ssc
  }

  def main(args: Array[String]): Unit = {

    val ssc = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)
    //启动程序
    ssc.start()
    ssc.awaitTermination()
  }
}

这段代码是一个SparkStraming与mysql交互的Demo,用到了foreachRDD算子,mysql连接池的代码这里先省略,因为不是重点,会在另一片专门写SparkStreaming的博客中给出。这段代码看似没有问题,但是运行报错:

org.apache.spark.SparkException: Task not serializable
Caused by: java.io.NotSerializableException: java.lang.Object

表示任务没有被序列化,那么这个序列化到底是指哪里呢?通过查阅官网,发现在介绍foreachRDD的时候有过这么一个介绍:

dstream.foreachRDD { rdd =>
  val connection = createNewConnection()  // executed at the driver
  rdd.foreach { record =>
    connection.send(record) // executed at the worker
  }
}

这个说明foreachRDD是在driver端执行的,而foreach是在worker端执行的。我们知道我们在提交代码的时候,提交这个动作是在driver端执行的,提交的这台服务器就是driver,那么哪些代码是在drvier端执行的呢?

    val conf = new SparkConf()
    conf.setAppName(s"${this.getClass.getSimpleName}").setMaster("local[2]")
    val sc = new SparkContext(conf)
    val ssc: StreamingContext = new StreamingContext(sc, Seconds(1))

以上的这些初始化的代码和:textfile、foreachRDD都是在driver端执行的;

而map、flatmap、reduceByKey、foreach、foreachPartition...这类算子都是在worker端执行的。

从driver到worker是要先序列化再可以传输的,所以你如果要在foreachRDD里面写代码,如果没有经过序列化,就会报错。那么怎么解决呢?

1、让它序列化啊

2、如果这个对象不支持序列化,那就不要写在foreachRDD里面啊

所以,原文的这段代码应该修改为:

    resultDStream.foreachRDD( rdd  =>{
      //Driver
      rdd.foreachPartition( partition  =>{
        //Executor
        val jdbcCoon = MysqlPool.getJdbcCoon()
        val statement = jdbcCoon.createStatement()
        partition.foreach( recored  =>{
          //Executor
           val word = recored._1
           val count = recored._2
          val sql=s"insert into  aura.1706wordcount values(now(),'${word}',${count})"
          statement.execute(sql)
        })
        MysqlPool.releaseConn(jdbcCoon)
      })
    })

你可能感兴趣的:(Spark)