深度学习---深度学习笔记(一):logistic分类

深度学习笔记(一):logistic分类 
深度学习笔记(二):简单神经网络,后向传播算法及实现 
深度学习笔记(三):激活函数和损失函数 
深度学习笔记(四):优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 
深度学习笔记(五):循环神经网络的概念,结构和代码注释 
深度学习笔记(六):LSTM 
深度学习笔记(七):Encoder-Decoder模型和Attention模型


这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概的概念,所以这轮学习比较着重于公式推导和具体实现,而对概念上的描述不多,因此比较适合对此有一定基础的同学

在正式开始写深度学习的知识之前,会有两节传统神经网络的内容,因为深度学习中大量运用了以往神经网络的知识。搞懂传统的神经网络如何工作是很有必要的,有助于对之后的学习打下坚实的基础。



1. logistic分类

几乎所有的教材都是从logistic分类开始的,因为logistic分类实在太经典,而且是神经网络的基本组成部分,每个神经元(cell)都可以看做是进行了一次logistic分类。

所谓logistic分类,顾名思义,逻辑分类,是一种二分类法,能将数据分成0和1两类。

logistic分类的流程比较简单,主要有线性求和,sigmoid函数激活,计算误差,修正参数这4个步骤。前两部用于判断,后两步用于修正。本文分为3部分,前2部分讲普通logistic分类的流程,第三部分则稍作扩展。



1.1 线性求和以及sigmoid函数

第1,2步是用于根据输入来判断分类的,所以放在一起说。假设有一个n维的输入列向量 xx,也有一个n维的参数列向量hh, 还有一个偏置量b, 那么就可以线性求和得到z. 

z=hTx+bz=hTx+b

此时因为z的值域是[,+][−∞,+∞] ,是无法根据z来判断xx 到底是属于0还是1的。因此我们需要一个函数,来将z的值映射到[0,1]之间, 这就是激活函数。激活函数有很多种,这里的激活函数是sigmoid函数。 

σ(x)=11+exσ(x)=σ(x)(1σ(x))σ(x)=11+e−xσ′(x)=σ(x)(1−σ(x))

其形状为 

深度学习---深度学习笔记(一):logistic分类_第1张图片 
图1 sigmoid函数

可以看到x越大, σ(x)σ(x) 越接近1,反之,则越接近0. 那么在判断的时候,我们首先对之前得到的z代入sigmoid函数 
a=σ(z)=σ(hTx+b)a=σ(z)=σ(hTx+b)

当 a 大于0.5的时候,我们判定x应属于1类,如果小于0.5,则属于0类。这样,就完成了判断的工作



1.2 误差计算以及参数修正

上面完成的判断过程中用到了参数向量h和偏置量b。 可以说,h和b的值直接关系到logistic判断的准确性。那么这两组参数是如何获得的呢?这就涉及到了参数的修正。在最开始的时候,h中的值是随机的,而b的值是0. 我们通过不断的训练来使得h和b能够尽可能的达到一个较优的值。

那么如何训练呢?假设我们期望输入x的判定是y,而实际得到的判定值是a,那么我们定义一个损失函数C(a,y),通过修正h和b的值来使得C最小化,这是一个优化问题。在凸优化问题中,可以通过 

Ch=0,Cb=0∂C∂h=0,∂C∂b=0

来直接算得h和b的最优解。然而在某些情况下,例如数据规模很大,或者非凸优化问题中,则不能这么做,而是用迭代的方法来得到局部最优解。 
h:=hηChb:=bηCbh:=h−η∂C∂hb:=b−η∂C∂b

其中  ηη  表示学习率。在这里,我们把损失函数定为平方损失函数,即 C=12(ay)2C=12(a−y)2  那么可以得到 
Ch====Cah(ay)σ(z)h(ay)σx(ay)a(1a)x∂C∂h=C′∂a∂h=(a−y)∂σ(z)∂h=(a−y)σ′x=(a−y)a(1−a)x

Cb=(ay)a(1a)∂C∂b=(a−y)a(1−a)

这样,就能够得到每次迭代的参数更新公式为 

h:=hη(ay)a(1a))xb:=bη(ay)a(1a))h:=h−η(a−y)a(1−a))xb:=b−η(a−y)a(1−a))



1.3 将logistic扩展到多分类

从之前可以看出,普通的logistic只能进行二分类,即只能够分为0或者1。那么如果这些样本属于多个类该怎么办呢?人们想了很多办法,例如一对多法,依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类需要构建k个分类器。还有一对一法,在任意两类样本之间设计一个分类器,k个类需要k(k-1)/2个分类器。

在这里,我们将输出由一个值更改为一个向量。例如有3个类,那么输出就是一个长度为3 的列向量,对应项的值为1,其他为0.即 

100010001[100][010][001]

分别表示第0,1,2个类。 也可以看成是原来若干个logistic分类器组合在一起。对应的某个分类器只对该类输出1,其他情况都输出0.从这一点上来讲,这个做法有点类似于一对多法。此时,由于输出从一个数成为一个向量, 之前的公式都要加以修改 。首先,原来的y,a,z,b变成了列向量, 向量 hh 变成了矩阵W。这样,判断部分的公式变为 
z=Wx+ba=σ(z)z=Wx+ba=σ(z)

此时的 σσ 函数表示对向量中的每一个元素单独做运算。即 
σ(x)=σ(x1)σ(x2)σ(xn)σ(x)=[σ(x1)σ(x2)⋮σ(xn)]

得到的a向量中,其最大值所在的位置索引即为判断出的分类。 
参数修正部分的公式也是类似的, 
CW=(ay).×a.×(1a)×xTCb=(ay).×a.×(1a)∂C∂W=(a−y).×a.×(1−a)×xT∂C∂b=(a−y).×a.×(1−a)

注意有些向量之间是进行点乘的。



转自: https://blog.csdn.net/u014595019/article/details/52554582

你可能感兴趣的:(机器&深度学习)