Java 8系列:
Java 8系列之Lambda表达示
Java 8系列之StreamApi
Java 8系列之Collector
Java 8系列之Optional
Java 8系列之Future
1.创建Stream
2.中间操作
3.终止操作
@Test
public void creatStream(){
//1.通过Collection系列集合提供的stream()或者parallelStream();
List<String> list=new ArrayList<String>();
Stream<String> stream1 = list.stream();
//2.通过Arrays中的静态方法Stream()获取数组流
Integer[] ints=new Integer[10];
Stream<Integer> stream2 = Arrays.stream(ints);
//3.通过Stream类中的静态方法of()
Stream<String> stream3 = Stream.of("aa", "bb", "cc");
Stream<Object> empty = Stream.empty();
//4.创建无限流
//迭代
Stream<Integer> stream4 = Stream.iterate(0, x -> x + 2);
//生成
Stream<Double> stream5 = Stream.generate(() -> Math.random());
}
创建一个Student类用来做测试
public class Student {
private String name;
private int age;
private int score;
...
private Status status;
public enum Status{
Free,Busy,Vocation
}
}
List<Student> students=Arrays.asList(
new Student("mm",22,78,Student.Status.Busy),
new Student("kk",23,98,Student.Status.Free),
new Student("qq",21,56,Student.Status.Vocation),
new Student("hh",23,43,Student.Status.Busy),
new Student("hh",23,43,Student.Status.Busy)
);
中间操作–筛选和切片
/**
* 中间操作--筛选和切片
*/
@Test
public void middle_(){
//filer:过滤 Stream filter(Predicate super T> predicate);
System.out.println("-------------------------------------------");
Stream<Student> filer = students.stream().filter(s -> s.getScore() > 60);
filer.forEach(System.out::println);
//limit:截断
System.out.println("-------------------------------------------");
Stream<Student> limit = students.stream().limit(2);
limit.forEach(System.out::println);
//skip:跳过
System.out.println("-------------------------------------------");
Stream<Student> skip = students.stream().skip(2);
skip.forEach(System.out::println);
//distinct:去重,通过流所生成元素的hashCode()和equals()去除重复的元素(也就是说Student要重写hashCode()和equals())
System.out.println("-------------------------------------------");
Stream<Student> distinct = students.stream().distinct();
distinct.forEach(System.out::println);
//peek:查看Stream流水线中的数据流的值
System.out.println("-------------------------------------------");
Stream<Integer> peek = students.stream().map(o->o.getScore()).peek(o-> System.out.print("原分数:"+o)).map(o->o+20);
peek.forEach(o-> System.out.println(",新分数:"+o));
}
中间操作–映射
/**
* 中间操作--映射
*/
@Test
public void middle_map(){
//map:映射,参数为Function super T, ? extends R> mapper
System.out.println("-------------------------------------------");
Stream<String> map= students.stream().map(Student::getName);
map.forEach(System.out::println);
//flatmap:映射,参数为Function super T, ? extends Stream extends R>> mapper,将Function方法返回的每个流中的每个元素放到流中
//map与flatmap的区别像是list的add()与addAll(),当然也不完全类似
System.out.println("-------------------------------------------");
Stream<Character> flatMap = students.stream().flatMap(s -> toBeCharacter(s.getName()));
flatMap.forEach(System.out::print);
//进一步学习map和flatmap
String[] arrayOfWords = {"Goodbye", "World"};
Stream<String> words = Arrays.stream(arrayOfWords);
//map(Arrays::stream)得到的是一个流的列表
List<Stream<String>> map1 = words.map(word -> word.split(""))
.map(Arrays::stream)
.distinct()
.collect(toList());
System.out.println("---------------------------------------map1:"+map1.get(0).collect(toList())+","+map1.get(1).collect(toList()));
//流只能消费一次,所以words已经被消费了,需要重复创建
Stream<String> words1 = Arrays.stream(arrayOfWords);
//各个数组并不是分别映射成一个流,而是映射成流的内容
List<String> flatMap1 = words1.map(word -> word.split(""))
.flatMap(Arrays::stream)
.distinct()
.collect(toList());
System.out.println("---------------------------------------flatMap1:"+flatMap1);
}
public static Stream<Character> toBeCharacter(String str){
List<Character> list=new ArrayList<>();
for (Character c:str.toCharArray()){
list.add(c);
}
return list.stream();
}
中间操作–排序
/**
* 中间操作--排序
*/
@Test
public void middle_sort(){
//sorted():排序,数组中的对象需要实现Comparable
//sorted(Comparator super T> comparator):排序,通过Comparator定制排序
Stream<Student> sorted = students.stream().sorted((x, y) -> Integer.compare(x.getAge(), y.getAge()));
sorted.forEach(System.out ::println);
}
终止操作–查找与匹配
/**
* 终止操作--查找与匹配
*/
@Test
public void end_match_find(){
//allMatch:检查是否匹配所有元素
boolean allMatch = students.stream().allMatch(s -> s.getStatus().equals(Student.Status.Busy));
System.out.println("是否所有人都很忙:"+allMatch);
//anyMatch:检查是否匹配一个元素
boolean anyMatch = students.stream().anyMatch(s -> s.getStatus().equals(Student.Status.Busy));
System.out.println("是否有人很忙:"+anyMatch);
//noneMatch:检查是否没有匹配所有元素
boolean noneMatch = students.stream().noneMatch(s -> s.getStatus().equals(Student.Status.Busy));
System.out.println("是否所有人都很闲:"+noneMatch);
//findFirst:返回第一个元素
Optional<Student> first = students.stream().findFirst();
System.out.println("第一个元素:"+first.get());
//findAny:返回当前流中的任意元素
Optional<Student> any = students.parallelStream().filter(s -> s.getStatus().equals(Student.Status.Busy)).findAny();
System.out.println("任一个元素:"+any.get());
}
终止操作–统计
/**
* 终止操作--统计
*/
@Test
public void end_Statistics(){
//count:返回流中元素的总个数
long count = students.stream().count();
System.out.println("学生人数:"+count);
//max:返回流中最大值
Optional<Student> max = students.stream().max((x, y) -> Integer.compare(x.getScore(), y.getScore()));
System.out.println("分数最高的学生:"+max.get());
//min:返回流中最小值
Optional<Integer> min = students.stream().map(Student::getScore).min(Integer::compare);
System.out.println("最低分数"+min.get());
//sum(),实际是没有这个方法的,因为无法对stream中的T可能并不是数值,无法对它做控制,解决方式如下
//引入数值流,注意mapToInt()返回的对象是IntStream,不是stream
IntStream intStream = students.stream().mapToInt(Student::getScore);
System.out.println("总分数"+intStream.sum());
//将IntStream转为stream,使用boxed()方法
// Stream stream = intStream.boxed();
}
终止操作–归约
/**
* 终止操作--归约
*/
@Test
public void end_reduce(){
//reduce:归约,元素计算
//第一种,有初始值:T reduce(T identity, BinaryOperator accumulator);
Integer reduce = students.stream().map(s -> s.getScore()).reduce(0, (x, y) -> x + y);
System.out.println("分数总和:"+reduce);
//第二种,无初始值:Optional reduce(BinaryOperator accumulator);可能为空,所以返回Optional
Optional<Integer> reduce1 = students.stream().map(s -> s.getScore()).reduce((x, y) -> x + y);
System.out.println("分数总和:"+reduce1.get());
Stream<Integer> stream = Arrays.stream(new Integer[2]);
//Optional reduce2 = stream.reduce((x, y) -> x + y);
//System.out.println("结果是否为空:"+reduce2.isPresent());
//求最大值,最小值
Optional<Integer> maxOptional = students.stream().map(s -> s.getScore()).reduce(Integer::max);
System.out.println("最大值 :"+maxOptional.get());
}
终止操作–收集
/**
* 终止操作--收集
*/
@Test
public void end_collect(){
//collection:收集,给stream中的元素做汇总,参数Collector super T, A, R> collector
System.out.println("----------------------------list------------------------------");
List<String> list = students.stream().map(s -> s.getName()).collect(toList());
list.forEach(System.out::println);
System.out.println("-------------------------set---------------------------------");
Set<String> set = students.stream().map(s -> s.getName()).collect(Collectors.toSet());
set.forEach(System.out::println);
System.out.println("------------------------hashSet----------------------------------");
HashSet<String> hashSet = students.stream().map(s -> s.getName()).collect(Collectors.toCollection(HashSet::new));
hashSet.forEach(System.out::println);
System.out.println("------------------------map----------------------------------");
Map<String, Student> map = students.stream().collect(Collectors.toMap(Student::getName, e -> e,(e1,e2)->e1));
for(String s:map.keySet()){
System.out.println(map.get(s));
}
}
终止操作–收集–groupingBy
/**
* 终止操作--收集--groupingBy
*/
@Test
public void end_collectors_groupingBy(){
//分组
System.out.println("---------------------原始写法-------group by------------------------------");
Map<Student.Status, List<Student>> group1=new HashMap<Student.Status, List<Student>>();
for(Student s: students){
Student.Status status = s.getStatus();
List<Student> students = group1.get(status);
if(students==null){
students=new ArrayList<Student>();
group1.put(s.getStatus(),students);
}
students.add(s);
}
for (Student.Status s:group1.keySet()){
System.out.println(s+":"+group1.get(s));
}
System.out.println("------------------------java8----group by------------------------------");
Map<Student.Status, List<Student>> group = students.stream().collect(Collectors.groupingBy(Student::getStatus));
for (Student.Status s:group.keySet()){
System.out.println(s+":"+group.get(s));
}
//groupingBy(f)是groupingBy(f,toList())的缩写
Map<String, List<Student>> groupBy = students.stream().collect(Collectors.groupingBy(o -> {
if (o.getScore() < 60) return "不及格";
else if (o.getScore() < 80) return "良";
else return "优秀";
}));
for (String s:groupBy.keySet()){
System.out.println(s+":"+groupBy.get(s));
}
System.out.println("------------------------java8----多级分组group by------------------------------");
Map<Student.Status, Map<String, List<Student>>> groupBys = students.stream().collect(Collectors.groupingBy(Student::getStatus, Collectors.groupingBy(o -> {
if (o.getScore() < 60) return "不及格";
else if (o.getScore() < 80) return "良";
else return "优秀";
})));
for (Student.Status s:groupBys.keySet()){
System.out.println(s+":"+groupBys.get(s));
}
//与 groupingBy 联合使用的其他收集器
System.out.println("--------------collectingAndThen,求每个状态中分数最高的学生-----------------------------");
Map<Student.Status, Student> studentMap = students.stream().collect(Collectors.groupingBy(Student::getStatus, Collectors.collectingAndThen(
Collectors.maxBy(Comparator.comparing(Student::getScore)), Optional::get)));
for (Student.Status s:studentMap.keySet()){
System.out.println(s+":"+studentMap.get(s));
}
System.out.println("--------------averagingInt,求每个状态的平均分-----------------------------");
Map<Student.Status, Double> statusDoubleMap = students.stream().collect(Collectors.groupingBy(Student::getStatus, Collectors.averagingInt(Student::getScore)));
for (Student.Status s:statusDoubleMap.keySet()){
System.out.println(s+":"+statusDoubleMap.get(s));
}
System.out.println("--------------averagingInt,求每个状态的学生集合-----------------------------");
Map<Student.Status, Set<String>> statusSetMap = students.stream().collect(Collectors.groupingBy(Student::getStatus, Collectors.mapping(Student::getName, Collectors.toSet())));
for (Student.Status s:statusSetMap.keySet()){
System.out.println(s+":"+statusSetMap.get(s));
}
}
终止操作–分区–partitioningBy
/**
* 终止操作--分区--partitioningBy
*/
@Test
public void end_collectors_partitioningBy(){
//参数是Predicate
Map<Boolean, List<Student>> map = students.stream().collect(Collectors.partitioningBy(o -> o.getScore() > 90));
System.out.println("成绩大于90分的学生:"+map.get(true));
//简单的分区也可以用filter来实现,但分区可以实现多级分区
Map<Boolean, Set<String>> map1 = students.stream().collect(Collectors.partitioningBy(o -> o.getScore() > 90, Collectors.mapping(Student::getName, Collectors.toSet())));
System.out.println("成绩大于90分的学生:"+map1.get(true));
}
终止操作–收集器–reducing: 汇总归约
/**
* 终止操作--收集器--reducing: 汇总归约
*/
@Test
public void end_collectors_reducing(){
//个数,底层:reducing(0L, e -> 1L, Long::sum)
Long count = students.stream().collect(Collectors.counting());
System.out.println("一共有多少个分数:"+count);
//最高分
Optional<Student> maxScore = students.stream().collect(Collectors.maxBy(Comparator.comparing(Student::getScore)));
System.out.println("最高分:"+maxScore);
//平均值
Double average = students.stream().collect(Collectors.averagingInt(s -> s.getScore()));
System.out.println("平均分:"+average);
//总和
Integer sum = students.stream().collect(Collectors.summingInt(s -> s.getScore()));
System.out.println("总分:"+sum);
//统计信息
IntSummaryStatistics statistics = students.stream().collect(Collectors.summarizingInt(Student::getScore));
System.out.println("统计信息:"+statistics);
//连接字符串
String studentNames = students.stream().map(Student::getName).collect(Collectors.joining(","));
System.out.println("学生:"+studentNames);
//广义归约reducing
Integer sumScore = students.stream().collect(Collectors.reducing(0, Student::getScore, Integer::sum));
System.out.println("总分:"+sumScore);
Optional<Integer> sumScore1 = students.stream().map(Student::getScore).collect(Collectors.reducing(Integer::sum));
System.out.println("总分:"+sumScore1.get());
}