【转载】caffe python layer

本文链接:https://blog.csdn.net/thesby/article/details/51264439

caffe的大多数层是由c++写成的,借助于c++的高效性,网络可以快速训练。但是我们有时候需要自己写点输入层以应对各种不同的数据输入,比如你因为是需要在图像中取块而不想写成LMDB,这时候可以考虑使用python直接写一个层。而且输入层不需要GPU加速,所需写起来也比较容易。

python层怎么用

先看一个网上的例子吧(来自http://chrischoy.github.io/research/caffe-python-layer/)

layer {

  type: 'Python'

  name: 'loss'

  top: 'loss'

  bottom: 'ipx'

  bottom: 'ipy'

  python_param {

    # the module name -- usually the filename -- that needs to be in $PYTHONPATH

    module: 'pyloss'

    # the layer name -- the class name in the module

    layer: 'EuclideanLossLayer'

  }

  # set loss weight so Caffe knows this is a loss layer

  loss_weight: 1

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

这里的type就只有Python一种,然后top,bottom和常见的层是一样的,module就是你的python module名字,一般就是文件名,然后layer就是定义的类的名字。

python层怎么写

这里就以 Fully Convolutional Networks for Semantic Segmentation 论文中公布的代码作为示例,解释python层该怎么写。

import caffe

import numpy as np

from PIL import Image

import random

class VOCSegDataLayer(caffe.Layer):

    """

    Load (input image, label image) pairs from PASCAL VOC

    one-at-a-time while reshaping the net to preserve dimensions.

    Use this to feed data to a fully convolutional network.

    """

    def setup(self, bottom, top):

        """

        Setup data layer according to parameters:

        - voc_dir: path to PASCAL VOC year dir

        - split: train / val / test

        - mean: tuple of mean values to subtract

        - randomize: load in random order (default: True)

        - seed: seed for randomization (default: None / current time)

        for PASCAL VOC semantic segmentation.

        example

        params = dict(voc_dir="/path/to/PASCAL/VOC2011",

            mean=(104.00698793, 116.66876762, 122.67891434),

            split="val")

        """

        # config

        params = eval(self.param_str)

        self.voc_dir = params['voc_dir']

        self.split = params['split']

        self.mean = np.array(params['mean'])

        self.random = params.get('randomize', True)

        self.seed = params.get('seed', None)

        # two tops: data and label

        if len(top) != 2:

            raise Exception("Need to define two tops: data and label.")

        # data layers have no bottoms

        if len(bottom) != 0:

            raise Exception("Do not define a bottom.")

        # load indices for images and labels

        split_f  = '{}/ImageSets/Segmentation/{}.txt'.format(self.voc_dir,

                self.split)

        self.indices = open(split_f, 'r').read().splitlines()

        self.idx = 0

        # make eval deterministic

        if 'train' not in self.split:

            self.random = False

        # randomization: seed and pick

        if self.random:

            random.seed(self.seed)

            self.idx = random.randint(0, len(self.indices)-1)

    def reshape(self, bottom, top):

        # load image + label image pair

        self.data = self.load_image(self.indices[self.idx])

        self.label = self.load_label(self.indices[self.idx])

        # reshape tops to fit (leading 1 is for batch dimension)

        top[0].reshape(1, *self.data.shape)

        top[1].reshape(1, *self.label.shape)

    def forward(self, bottom, top):

        # assign output

        top[0].data[...] = self.data

        top[1].data[...] = self.label

        # pick next input

        if self.random:

            self.idx = random.randint(0, len(self.indices)-1)

        else:

            self.idx += 1

            if self.idx == len(self.indices):

                self.idx = 0

    def backward(self, top, propagate_down, bottom):

        pass

    def load_image(self, idx):

        """

        Load input image and preprocess for Caffe:

        - cast to float

        - switch channels RGB -> BGR

        - subtract mean

        - transpose to channel x height x width order

        """

        im = Image.open('{}/JPEGImages/{}.jpg'.format(self.voc_dir, idx))

        in_ = np.array(im, dtype=np.float32)

        in_ = in_[:,:,::-1]

        in_ -= self.mean

        in_ = in_.transpose((2,0,1))

        return in_

    def load_label(self, idx):

        """

        Load label image as 1 x height x width integer array of label indices.

        The leading singleton dimension is required by the loss.

        """

        im = Image.open('{}/SegmentationClass/{}.png'.format(self.voc_dir, idx))

        label = np.array(im, dtype=np.uint8)

        label = label[np.newaxis, ...]

        return label

class SBDDSegDataLayer(caffe.Layer):

    """

    Load (input image, label image) pairs from the SBDD extended labeling

    of PASCAL VOC for semantic segmentation

    one-at-a-time while reshaping the net to preserve dimensions.

    Use this to feed data to a fully convolutional network.

    """

    def setup(self, bottom, top):

        """

        Setup data layer according to parameters:

        - sbdd_dir: path to SBDD `dataset` dir

        - split: train / seg11valid

        - mean: tuple of mean values to subtract

        - randomize: load in random order (default: True)

        - seed: seed for randomization (default: None / current time)

        for SBDD semantic segmentation.

        N.B.segv11alid is the set of segval11 that does not intersect with SBDD.

        Find it here: https://gist.github.com/shelhamer/edb330760338892d511e.

        example

        params = dict(sbdd_dir="/path/to/SBDD/dataset",

            mean=(104.00698793, 116.66876762, 122.67891434),

            split="valid")

        """

        # config

        params = eval(self.param_str)

        self.sbdd_dir = params['sbdd_dir']

        self.split = params['split']

        self.mean = np.array(params['mean'])

        self.random = params.get('randomize', True)

        self.seed = params.get('seed', None)

        # two tops: data and label

        if len(top) != 2:

            raise Exception("Need to define two tops: data and label.")

        # data layers have no bottoms

        if len(bottom) != 0:

            raise Exception("Do not define a bottom.")

        # load indices for images and labels

        split_f  = '{}/{}.txt'.format(self.sbdd_dir,

                self.split)

        self.indices = open(split_f, 'r').read().splitlines()

        self.idx = 0

        # make eval deterministic

        if 'train' not in self.split:

            self.random = False

        # randomization: seed and pick

        if self.random:

            random.seed(self.seed)

            self.idx = random.randint(0, len(self.indices)-1)

    def reshape(self, bottom, top):

        # load image + label image pair

        self.data = self.load_image(self.indices[self.idx])

        self.label = self.load_label(self.indices[self.idx])

        # reshape tops to fit (leading 1 is for batch dimension)

        top[0].reshape(1, *self.data.shape)

        top[1].reshape(1, *self.label.shape)

    def forward(self, bottom, top):

        # assign output

        top[0].data[...] = self.data

        top[1].data[...] = self.label

        # pick next input

        if self.random:

            self.idx = random.randint(0, len(self.indices)-1)

        else:

            self.idx += 1

            if self.idx == len(self.indices):

                self.idx = 0

    def backward(self, top, propagate_down, bottom):

        pass

    def load_image(self, idx):

        """

        Load input image and preprocess for Caffe:

        - cast to float

        - switch channels RGB -> BGR

        - subtract mean

        - transpose to channel x height x width order

        """

        im = Image.open('{}/img/{}.jpg'.format(self.sbdd_dir, idx))

        in_ = np.array(im, dtype=np.float32)

        in_ = in_[:,:,::-1]

        in_ -= self.mean

        in_ = in_.transpose((2,0,1))

        return in_

    def load_label(self, idx):

        """

        Load label image as 1 x height x width integer array of label indices.

        The leading singleton dimension is required by the loss.

        """

        import scipy.io

        mat = scipy.io.loadmat('{}/cls/{}.mat'.format(self.sbdd_dir, idx))

        label = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8)

        label = label[np.newaxis, ...]

        return label

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

每个类都是层,类的名字就是layer参数的名字。这两个都是数据输入层,由于需要一个data,一个label,所以有两个top,没有bottomo。

类直接继承的是caffe.Layer,然后必须重写setup(),reshape(),forward(),backward()函数,其他的函数可以自己定义,没有限制。

setup()是类启动时该做的事情,比如层所需数据的初始化。

reshape()就是取数据然后把它规范化为四维的矩阵。每次取数据都会调用此函数。

forward()就是网络的前向运行,这里就是把取到的数据往前传递,因为没有其他运算。

backward()就是网络的反馈,data层是没有反馈的,所以这里就直接pass。

PS

这里就把一些资料整合起来,以供参考吧。

1、caffe官网现在开始有了点pycaffe的资料,但是鉴于caffe经常更新,不知道什么时候就把它删除,所需摘录到此。

文件: pyloss.py

import caffe

import numpy as np

class EuclideanLossLayer(caffe.Layer):

    """

    Compute the Euclidean Loss in the same manner as the C++ EuclideanLossLayer

    to demonstrate the class interface for developing layers in Python.

    """

    def setup(self, bottom, top):

        # check input pair

        if len(bottom) != 2:

            raise Exception("Need two inputs to compute distance.")

    def reshape(self, bottom, top):

        # check input dimensions match

        if bottom[0].count != bottom[1].count:

            raise Exception("Inputs must have the same dimension.")

        # difference is shape of inputs

        self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)

        # loss output is scalar

        top[0].reshape(1)

    def forward(self, bottom, top):

        self.diff[...] = bottom[0].data - bottom[1].data

        top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2.

    def backward(self, top, propagate_down, bottom):

        for i in range(2):

            if not propagate_down[i]:

                continue

            if i == 0:

                sign = 1

            else:

                sign = -1

            bottom[i].diff[...] = sign * self.diff / bottom[i].num

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

下面这个就是如何使用这个层了:

linreg.prototxt

name: 'LinearRegressionExample'

# define a simple network for linear regression on dummy data

# that computes the loss by a PythonLayer.

layer {

  type: 'DummyData'

  name: 'x'

  top: 'x'

  dummy_data_param {

    shape: { dim: 10 dim: 3 dim: 2 }

    data_filler: { type: 'gaussian' }

  }

}

layer {

  type: 'DummyData'

  name: 'y'

  top: 'y'

  dummy_data_param {

    shape: { dim: 10 dim: 3 dim: 2 }

    data_filler: { type: 'gaussian' }

  }

}

# include InnerProduct layers for parameters

# so the net will need backward

layer {

  type: 'InnerProduct'

  name: 'ipx'

  top: 'ipx'

  bottom: 'x'

  inner_product_param {

    num_output: 10

    weight_filler { type: 'xavier' }

  }

}

layer {

  type: 'InnerProduct'

  name: 'ipy'

  top: 'ipy'

  bottom: 'y'

  inner_product_param {

    num_output: 10

    weight_filler { type: 'xavier' }

  }

}

layer {

  type: 'Python'

  name: 'loss'

  top: 'loss'

  bottom: 'ipx'

  bottom: 'ipy'

  python_param {

    # the module name -- usually the filename -- that needs to be in $PYTHONPATH

    module: 'pyloss'

    # the layer name -- the class name in the module

    layer: 'EuclideanLossLayer'

  }

  # set loss weight so Caffe knows this is a loss layer.

  # since PythonLayer inherits directly from Layer, this isn't automatically

  # known to Caffe

  loss_weight: 1

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

pascal_multilabel_datalayers.py

# imports

import json

import time

import pickle

import scipy.misc

import skimage.io

import caffe

import numpy as np

import os.path as osp

from xml.dom import minidom

from random import shuffle

from threading import Thread

from PIL import Image

from tools import SimpleTransformer

class PascalMultilabelDataLayerSync(caffe.Layer):

    """

    This is a simple syncronous datalayer for training a multilabel model on

    PASCAL.

    """

    def setup(self, bottom, top):

        self.top_names = ['data', 'label']

        # === Read input parameters ===

        # params is a python dictionary with layer parameters.

        params = eval(self.param_str)

        # Check the paramameters for validity.

        check_params(params)

        # store input as class variables

        self.batch_size = params['batch_size']

        # Create a batch loader to load the images.

        self.batch_loader = BatchLoader(params, None)

        # === reshape tops ===

        # since we use a fixed input image size, we can shape the data layer

        # once. Else, we'd have to do it in the reshape call.

        top[0].reshape(

            self.batch_size, 3, params['im_shape'][0], params['im_shape'][1])

        # Note the 20 channels (because PASCAL has 20 classes.)

        top[1].reshape(self.batch_size, 20)

        print_info("PascalMultilabelDataLayerSync", params)

    def forward(self, bottom, top):

        """

        Load data.

        """

        for itt in range(self.batch_size):

            # Use the batch loader to load the next image.

            im, multilabel = self.batch_loader.load_next_image()

            # Add directly to the caffe data layer

            top[0].data[itt, ...] = im

            top[1].data[itt, ...] = multilabel

    def reshape(self, bottom, top):

        """

        There is no need to reshape the data, since the input is of fixed size

        (rows and columns)

        """

        pass

    def backward(self, top, propagate_down, bottom):

        """

        These layers does not back propagate

        """

        pass

class BatchLoader(object):

    """

    This class abstracts away the loading of images.

    Images can either be loaded singly, or in a batch. The latter is used for

    the asyncronous data layer to preload batches while other processing is

    performed.

    """

    def __init__(self, params, result):

        self.result = result

        self.batch_size = params['batch_size']

        self.pascal_root = params['pascal_root']

        self.im_shape = params['im_shape']

        # get list of image indexes.

        list_file = params['split'] + '.txt'

        self.indexlist = [line.rstrip('\n') for line in open(

            osp.join(self.pascal_root, 'ImageSets/Main', list_file))]

        self._cur = 0  # current image

        # this class does some simple data-manipulations

        self.transformer = SimpleTransformer()

        print "BatchLoader initialized with {} images".format(

            len(self.indexlist))

    def load_next_image(self):

        """

        Load the next image in a batch.

        """

        # Did we finish an epoch?

        if self._cur == len(self.indexlist):

            self._cur = 0

            shuffle(self.indexlist)

        # Load an image

        index = self.indexlist[self._cur]  # Get the image index

        image_file_name = index + '.jpg'

        im = np.asarray(Image.open(

            osp.join(self.pascal_root, 'JPEGImages', image_file_name)))

        im = scipy.misc.imresize(im, self.im_shape)  # resize

        # do a simple horizontal flip as data augmentation

        flip = np.random.choice(2)*2-1

        im = im[:, ::flip, :]

        # Load and prepare ground truth

        multilabel = np.zeros(20).astype(np.float32)

        anns = load_pascal_annotation(index, self.pascal_root)

        for label in anns['gt_classes']:

            # in the multilabel problem we don't care how MANY instances

            # there are of each class. Only if they are present.

            # The "-1" is b/c we are not interested in the background

            # class.

            multilabel[label - 1] = 1

        self._cur += 1

        return self.transformer.preprocess(im), multilabel

def load_pascal_annotation(index, pascal_root):

    """

    This code is borrowed from Ross Girshick's FAST-RCNN code

    (https://github.com/rbgirshick/fast-rcnn).

    It parses the PASCAL .xml metadata files.

    See publication for further details: (http://arxiv.org/abs/1504.08083).

    Thanks Ross!

    """

    classes = ('__background__',  # always index 0

              'aeroplane', 'bicycle', 'bird', 'boat',

              'bottle', 'bus', 'car', 'cat', 'chair',

                        'cow', 'diningtable', 'dog', 'horse',

                        'motorbike', 'person', 'pottedplant',

                        'sheep', 'sofa', 'train', 'tvmonitor')

    class_to_ind = dict(zip(classes, xrange(21)))

    filename = osp.join(pascal_root, 'Annotations', index + '.xml')

    # print 'Loading: {}'.format(filename)

    def get_data_from_tag(node, tag):

        return node.getElementsByTagName(tag)[0].childNodes[0].data

    with open(filename) as f:

        data = minidom.parseString(f.read())

    objs = data.getElementsByTagName('object')

    num_objs = len(objs)

    boxes = np.zeros((num_objs, 4), dtype=np.uint16)

    gt_classes = np.zeros((num_objs), dtype=np.int32)

    overlaps = np.zeros((num_objs, 21), dtype=np.float32)

    # Load object bounding boxes into a data frame.

    for ix, obj in enumerate(objs):

        # Make pixel indexes 0-based

        x1 = float(get_data_from_tag(obj, 'xmin')) - 1

        y1 = float(get_data_from_tag(obj, 'ymin')) - 1

        x2 = float(get_data_from_tag(obj, 'xmax')) - 1

        y2 = float(get_data_from_tag(obj, 'ymax')) - 1

        cls = class_to_ind[

            str(get_data_from_tag(obj, "name")).lower().strip()]

        boxes[ix, :] = [x1, y1, x2, y2]

        gt_classes[ix] = cls

        overlaps[ix, cls] = 1.0

    overlaps = scipy.sparse.csr_matrix(overlaps)

    return {'boxes': boxes,

            'gt_classes': gt_classes,

            'gt_overlaps': overlaps,

            'flipped': False,

            'index': index}

def check_params(params):

    """

    A utility function to check the parameters for the data layers.

    """

    assert 'split' in params.keys(

    ), 'Params must include split (train, val, or test).'

    required = ['batch_size', 'pascal_root', 'im_shape']

    for r in required:

        assert r in params.keys(), 'Params must include {}'.format(r)

def print_info(name, params):

    """

    Ouput some info regarding the class

    """

    print "{} initialized for split: {}, with bs: {}, im_shape: {}.".format(

        name,

        params['split'],

        params['batch_size'],

        params['im_shape'])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

caffenet.py

from __future__ import print_function

from caffe import layers as L, params as P, to_proto

from caffe.proto import caffe_pb2

# helper function for common structures

def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1):

    conv = L.Convolution(bottom, kernel_size=ks, stride=stride,

                                num_output=nout, pad=pad, group=group)

    return conv, L.ReLU(conv, in_place=True)

def fc_relu(bottom, nout):

    fc = L.InnerProduct(bottom, num_output=nout)

    return fc, L.ReLU(fc, in_place=True)

def max_pool(bottom, ks, stride=1):

    return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride)

def caffenet(lmdb, batch_size=256, include_acc=False):

    data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,

        transform_param=dict(crop_size=227, mean_value=[104, 117, 123], mirror=True))

    # the net itself

    conv1, relu1 = conv_relu(data, 11, 96, stride=4)

    pool1 = max_pool(relu1, 3, stride=2)

    norm1 = L.LRN(pool1, local_size=5, alpha=1e-4, beta=0.75)

    conv2, relu2 = conv_relu(norm1, 5, 256, pad=2, group=2)

    pool2 = max_pool(relu2, 3, stride=2)

    norm2 = L.LRN(pool2, local_size=5, alpha=1e-4, beta=0.75)

    conv3, relu3 = conv_relu(norm2, 3, 384, pad=1)

    conv4, relu4 = conv_relu(relu3, 3, 384, pad=1, group=2)

    conv5, relu5 = conv_relu(relu4, 3, 256, pad=1, group=2)

    pool5 = max_pool(relu5, 3, stride=2)

    fc6, relu6 = fc_relu(pool5, 4096)

    drop6 = L.Dropout(relu6, in_place=True)

    fc7, relu7 = fc_relu(drop6, 4096)

    drop7 = L.Dropout(relu7, in_place=True)

    fc8 = L.InnerProduct(drop7, num_output=1000)

    loss = L.SoftmaxWithLoss(fc8, label)

    if include_acc:

        acc = L.Accuracy(fc8, label)

        return to_proto(loss, acc)

    else:

        return to_proto(loss)

def make_net():

    with open('train.prototxt', 'w') as f:

        print(caffenet('/path/to/caffe-train-lmdb'), file=f)

    with open('test.prototxt', 'w') as f:

        print(caffenet('/path/to/caffe-val-lmdb', batch_size=50, include_acc=True), file=f)

if __name__ == '__main__':

    make_net()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

tools.py

import numpy as np

class SimpleTransformer:

    """

    SimpleTransformer is a simple class for preprocessing and deprocessing

    images for caffe.

    """

    def __init__(self, mean=[128, 128, 128]):

        self.mean = np.array(mean, dtype=np.float32)

        self.scale = 1.0

    def set_mean(self, mean):

        """

        Set the mean to subtract for centering the data.

        """

        self.mean = mean

    def set_scale(self, scale):

        """

        Set the data scaling.

        """

        self.scale = scale

    def preprocess(self, im):

        """

        preprocess() emulate the pre-processing occuring in the vgg16 caffe

        prototxt.

        """

        im = np.float32(im)

        im = im[:, :, ::-1]  # change to BGR

        im -= self.mean

        im *= self.scale

        im = im.transpose((2, 0, 1))

        return im

    def deprocess(self, im):

        """

        inverse of preprocess()

        """

        im = im.transpose(1, 2, 0)

        im /= self.scale

        im += self.mean

        im = im[:, :, ::-1]  # change to RGB

        return np.uint8(im)

class CaffeSolver:

    """

    Caffesolver is a class for creating a solver.prototxt file. It sets default

    values and can export a solver parameter file.

    Note that all parameters are stored as strings. Strings variables are

    stored as strings in strings.

    """

    def __init__(self, testnet_prototxt_path="testnet.prototxt",

                trainnet_prototxt_path="trainnet.prototxt", debug=False):

        self.sp = {}

        # critical:

        self.sp['base_lr'] = '0.001'

        self.sp['momentum'] = '0.9'

        # speed:

        self.sp['test_iter'] = '100'

        self.sp['test_interval'] = '250'

        # looks:

        self.sp['display'] = '25'

        self.sp['snapshot'] = '2500'

        self.sp['snapshot_prefix'] = '"snapshot"'  # string withing a string!

        # learning rate policy

        self.sp['lr_policy'] = '"fixed"'

        # important, but rare:

        self.sp['gamma'] = '0.1'

        self.sp['weight_decay'] = '0.0005'

        self.sp['train_net'] = '"' + trainnet_prototxt_path + '"'

        self.sp['test_net'] = '"' + testnet_prototxt_path + '"'

        # pretty much never change these.

        self.sp['max_iter'] = '100000'

        self.sp['test_initialization'] = 'false'

        self.sp['average_loss'] = '25'  # this has to do with the display.

        self.sp['iter_size'] = '1'  # this is for accumulating gradients

        if (debug):

            self.sp['max_iter'] = '12'

            self.sp['test_iter'] = '1'

            self.sp['test_interval'] = '4'

            self.sp['display'] = '1'

    def add_from_file(self, filepath):

        """

        Reads a caffe solver prototxt file and updates the Caffesolver

        instance parameters.

        """

        with open(filepath, 'r') as f:

            for line in f:

                if line[0] == '#':

                    continue

                splitLine = line.split(':')

                self.sp[splitLine[0].strip()] = splitLine[1].strip()

    def write(self, filepath):

        """

        Export solver parameters to INPUT "filepath". Sorted alphabetically.

        """

        f = open(filepath, 'w')

        for key, value in sorted(self.sp.items()):

            if not(type(value) is str):

                raise TypeError('All solver parameters must be strings')

            f.write('%s: %s\n' % (key, value))

---------------------

本文来自 thesby 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/thesby/article/details/51264439?utm_source=copy

你可能感兴趣的:(【转载】caffe python layer)