- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- C++8--赋值运算符重载
大胆飞猪
c++
1.运算符重载C++引入运算符的目的是为了增强代码的可读性。运算符重载是具有特殊函数名的函数,也具有其返回值类型,函数名字以及参数列表,其返回值类型与参数列表与普通的函数相似。函数名字为:关键字operator后面接需要重载的运算符符号函数原型:返回值类型operator操作符(参数列表)注意:不能通过连接其他符号来创建新的操作符:比如operator@重载操作符必须有一个类类型参数用于内置类型的
- pjsip pjsua_media_config 结构体说明
小gpt&
Pjsip音视频qtc++
clock_rate描述:设置会议桥(conferencebridge)的时钟频率(采样率)。默认值:0(使用默认值PJSUA_DEFAULT_CLOCK_RATE,通常为16kHz)。作用:影响音频的采样率,常见值有8000(8kHz)、16000(16kHz)、48000(48kHz)等。snd_clock_rate描述:设置音频设备的时钟频率(采样率)。默认值:0(使用会议桥的时钟频率)。作
- MATLAB 操作指南(结尾附实操案例)
vvvae1234
信息可视化
一、MATLAB简介MATLAB(矩阵实验室)是一个高级技术计算语言和交互环境,它主要用于数值计算、数据分析、算法开发和可视化。MATLAB的核心功能是矩阵运算,它能够处理向量和矩阵为中心的数学问题,方便用户进行算法的开发和数据可视化。主要特点高效的数值计算:MATLAB内置了许多用于数学和工程计算的函数,用户可以轻松地进行数值运算。可视化功能:MATLAB提供了丰富的工具,用于生成各种类型的图形
- 【后端】【django】Django DRF `@action` 详解:自定义 ViewSet 方法
患得患失949
django知识面试考题专栏(前后端)djangosqlitepython
DjangoDRF@action详解:自定义ViewSet方法在DjangoRESTFramework(DRF)中,@action装饰器用于为ViewSet添加自定义的API端点。相比于update、create等默认方法,@action允许我们定义更加清晰、语义化的API访问路径,使接口更加易读且符合RESTful设计原则。1.@action的作用@action主要用于自定义API端点,避免滥用
- 两会聚焦科技金融创新,赛逸展2025成重要实践平台
赛逸展张胜
科技金融
在今年两会的热烈讨论中,科技金融创新成为核心议题之一,引发各界高度关注。国家对于科技金融的重视达到新高度,一系列旨在推动科技创新与金融深度融合的政策呼之欲出,力求为硬科技企业的成长注入强劲动力。会议期间,中国人民银行行长潘功胜透露,人民银行正携手证监会、科技部等部门,全力筹备在债券市场推出“科技板”。这一举措旨在通过创新金融工具,为科技型企业开辟更为便捷的融资渠道。通过完善发行交易制度,创新风险分
- Shell 目录
ianozo
#反弹shelllinux运维服务器
反弹shellSUID提权一些疑问什么是SUID:SUID=SetUserID,特殊权限,标志为s(如-rwsr-xr-x),当用户执行该程序时,程序会以文件所有者的权限运行(比如以root身份运行)但是为什么不用sudo密码就能直接运行root呢:无需sudo密码的关键原因——管理员错误配置了sudo权限,配置了NOPASSWD为什么需要SUID?比如说最需要SUID权限的/user/bin/p
- 白话设计模式之(53):迭代器模式——数据遍历的“百变魔方”
一杯年华@编程空间
白话设计模式设计模式迭代器模式
白话设计模式之(53):迭代器模式——数据遍历的“百变魔方”大家好!在软件开发的学习过程中,我们都在不断探索如何让代码更加高效、灵活且易于维护。设计模式作为编程领域的关键知识,为我们解决各种复杂问题提供了有力的工具。今天,咱们继续深入研究迭代器模式,它就像一个“百变魔方”,不仅能实现基本的数据遍历功能,还能通过各种扩展和变化,满足不同场景下的数据访问需求。希望通过这篇博客,能和大家一起更全面地理解
- 聊天模型集成指南
三月七꧁ ꧂
langchain+llmmicrosoft语言模型prompt人工智能自然语言处理开发语言llama
文章目录聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型集成OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反馈。在这样的背景下,开发者们急需一套可以轻松切换、集成不同平台的工具。正是基于这样的需求,Anthropic、PaLM2和Op
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- html5使用本地sqlite数据库
小祁爱编程
sqlitehtml5bigdata
html5使用本地sqlite数据库本地数据库概述在HTML5中,大大丰富了客户端本地可以存储的内容,添加了很多功能将原本必须要保存在服务器上的数据转为保存在客户端本地,从而大大提高了Web应用程序性能,减轻了服务器的负担,使用Web时代重新回到了“客户端为重、服务器端为轻”的时代。HTML5中内置了两种本地数据库,一种是SQLite,一种是indexedDBSQLite数据库使用操作本地数据库的
- VSCode SSHFS 扩展使用教程
史跃骏Erika
VSCodeSSHFS扩展使用教程vscode-sshfsExtensionforVisualStudioCode:FilesystemproviderusingSSH项目地址:https://gitcode.com/gh_mirrors/vs/vscode-sshfs1.项目介绍VSCodeSSHFS是一个用于VisualStudioCode的扩展,允许用户通过SSH协议将远程文件系统挂载为本地
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- C语言学习笔记-进阶(17)预处理详解
John.Lewis
c语言学习笔记
1.预定义符号C语言设置了一些预定义符号,可以直接使用,预定义符号也是在预处理期间处理的。__FILE__//进⾏编译的源⽂件__LINE__//⽂件当前的⾏号__DATE__//⽂件被编译的⽇期__TIME__//⽂件被编译的时间__STDC__//如果编译器遵循ANSIC,其值为1,否则未定义举个例子:printf("file:%sline:%d\n",__FILE__,__LINE__);2
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- YOLOv8涨点大全总结(源码)
清风AI
深度学习YOLO计算机视觉神经网络人工智能python
(需要全部源码请私信或留言)性能指标在探讨YOLOv8的性能提升之前,我们需要明确评估其性能的主要指标。这些指标不仅是衡量模型优劣的标准,也是后续改进工作的出发点。常见的性能指标包括:指标名称含义mAP5050%交并比阈值下的平均精度mAP50-9550-95%交并比阈值范围内,步长为5%的平均精度Precision预测正确的正样本占总预测正样本的比例Recall预测正确的正样本占实际正样本总数的
- P1010 [NOIP 1998 普及组] 幂次方
黄昏岭
算法java
题目描述任何一个正整数都可以用2的幂次方表示。例如137=27+23+20。同时约定次方用括号来表示,即ab可表示为a(b)。由此可知,137可表示为2(7)+2(3)+2(0)进一步:7=22+2+20(21用2表示),并且3=2+20。所以最后137可表示为2(2(2)+2+2(0))+2(2+2(0))+2(0)。又如1315=210+28+25+2+1所以1315最后可表示为2(2(2+2
- 深入理解 Rust 中的模式匹配语法
Hello.Reader
rustrust开发语言
一、匹配字面量在Rust中,可以直接对具体的字面量进行匹配。例如:fnmain(){letx=1;matchx{1=>println!("匹配到字面量1"),_=>println!("其他值"),}}当x的值为1时,匹配成功并打印出对应的信息。对于需要对特定具体值进行处理的场景,这种写法非常直观有效。二、匹配命名变量在模式匹配中,使用命名变量可以将匹配到的值绑定到一个变量上。需要注意的是,在mat
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- ospf的内容解析
ZHGJX-春分时节爱中分
智能路由器网络
当然,以下是您提供的OSPF(开放最短路径优先)接口配置信息的翻译:---**OSPF进程1,路由器ID为12.1.1.2****接口信息**区域:0.0.0.0(未启用MPLSTE)**接口:12.1.1.2(千兆以太网0/0/1)**-成本:1-状态:BDR(备份指定路由器)-类型:广播-最大传输单元(MTU):1500-优先级:1-指定路由器:12.1.1.1-备份指定路由器:12.1.1.
- WAI-ARIA
前端岳大宝
前端核心知识总结前端html
以下是关于WAI-ARIA(WebAccessibilityInitiative-AccessibleRichInternetApplications)的核心知识梳理。一、WAI-ARIA的基本概念定义与作用WAI-ARIA是一套由W3C制定的技术规范,旨在通过语义补充使动态Web应用(如单页应用、复杂UI组件)对辅助技术(如屏幕阅读器)更可访问。核心目标:为无法通过原生HTML语义化标签表达的U
- A800架构设计与实战
智能计算研究中心
其他
内容概要《A800架构设计与实战》围绕新一代计算架构的技术演进与工程落地展开系统性论述。全书以分布式运算优化原理为切入点,通过对核心模块的层级化拆解,深入剖析多节点协同计算中的资源分配、任务调度及通信瓶颈突破方法。为强化理论与实践的结合,书中引入智能制造与云渲染两大典型场景的完整案例,覆盖从需求分析、架构设计到性能调优的全生命周期。技术维度实现路径应用价值架构设计核心模块拆分与重组降低系统耦合度分
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- VLAN和Trunk实验
青.衫
智能路由器网络
VLAN和Trunk实验实验拓扑实验需求1.按照图示给所有路由器(此处充当pc机)配置IP地址2.SW1和SW2上分别创建vlan10和vlan20,要求R1和R3属于vlan10,R2和R4属于vlan203.SW1和SW2相连的接口配置类型为trunk类型,允许vlan10和vlan20通过4.测试效果,同一vlan的路由器可以互通,不同vlan的路由器无法互通实验步骤1.路由器配置IP地址在
- 《今日AI-人工智能-编程日报》
小亦工作室
人工智能
1.AI行业动态1.1Manus通用智能体初成型,开启AIAgent新时代中泰证券发布研报称,首款通用型AI智能体Manus已问世,能够将复杂任务拆解为可执行的步骤链,并在虚拟环境中灵活调用工具,标志着AI从“Reasoner”走向“Agent”阶段。Manus的成功引发了开源复现潮,DeepSeek模型已被整合到OWL项目中,并在GAIA基准测试中表现接近Manus。1.2DeepSeek-R2
- 1章5节:大模型术语解读与从生成到推理的演进
DAT|R科学与人工智能
人工智能
在人工智能的浩瀚宇宙中,大模型正以前所未有的速度演进,推动着科技变革的新浪潮。从多模态到通用模型,再到行业模型,人工智能的边界不断拓展,为各行各业带来了全新的机遇与挑战。本篇文章将深入剖析大模型相关的核心术语,探讨其内涵、应用及发展趋势,并回顾大模型从生成到推理的演进历程,解析全球科技巨头与国内前沿企业在这一领域的竞争与创新。让我们一同探索大模型的演进脉络,把握智能时代的发展脉搏。一、剖析大模型相
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- 如何合理拆分微服务
微服务
**在微服务架构中,要想做到合理拆分,需要重点关注:服务边界划分、业务耦合度控制、数据隔离策略、服务自治能力、团队组织协调。它们共同决定了微服务架构的灵活度与可维护性,其中,服务边界划分是最基础且最关键的一步。它要求我们从业务领域出发,将高度聚合、密切相关的功能抽离成单独服务,避免粗放的“大而全”式切分。在实际落地时,应当以业务语义、数据交互频率等为出发点,力求服务粒度既不会过细导致管理成本飙升,
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D