- Azure AI-102 认证全攻略: (二十二) AI的隐私与安全
海棠AI实验室
AI-102认证考试全攻略azure人工智能安全microsoftAI-102
引言:AI隐私与安全的重要性随着人工智能技术的飞速发展,数据隐私和安全问题已成为一个亟需解决的挑战。AI系统往往需要处理大量的敏感数据,这些数据的泄露或滥用不仅会对个人隐私产生严重影响,还可能对企业的声誉和信任度造成灾难性的损害。因此,在AI领域中,隐私与安全的保护已经成为设计和实施AI解决方案时必须严格遵守的基本原则。随着全球隐私保护法规的日益完善,如欧洲的《通用数据保护条例》(GDPR)和加利
- 最多获得的短信条数_云短信平台优惠活动_200分_A卷_动态规划
bug小王爷
华为OD机试真题(JavaA卷+B卷)动态规划华为od华为java
最多获得的短信条数_云短信平台优惠活动题目描述:某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入输出描述:输入描述: 第一行客户预算M,其中0≤M≤10^6 第二行给出售价表,P1,P2,…Pn,其中1≤n≤100, Pi为充值i元获得的短信条数。 1≤Pi≤1000,1≤n≤100输出描述: 最多获得的短信条数示例1:输入:6
- 2025年前端发展趋势
贵州数擎科技有限公司
前端javascript
开发领域:前端开发|AI应用|Web3D|元宇宙技术栈:JavaScript、React、ThreeJs、WebGL、Go经验经验:6年+前端开发经验,专注于图形渲染和AI技术开源项目:github晓智元宇宙、数字孪生引擎、前端面试题大家好!我是[晓智],一位热爱探索新技术的前端开发者,在这里分享前端和Web3D、AI技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步!
- 华为OD机试真题-最多获得的短信条数【2023.Q1】
IkunAlgorithm
华为OD试题库2023年java开发语言华为面试算法
题目内容某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入描述第一行客户预算M,其中0≤M≤10^6第二行给出售价表,P1,P2,…Pn,其中1≤n≤100,Pi为充值i元获得的短信条数。1≤Pi≤1000,1≤n≤100输出描述:最多获得的短信条数示例1:输入:61020304060输出:70说明:分别充值1元和5元,可以获得10+60条
- 【华为OD】| 最多获得的短信条数、云短 信平台优惠活动_完全背包
buff会技术的程序媛
-JS】技术杂谈技术learn算法java
目录一.题目描述二.输入描述三.输出描述用例四.题目解析五.Java玩法六.JavaScript玩法一.题目描述某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。二.输入描述第一行客户预算M,其中0<=M<=10^6第二行给出售价表,P1,P2,…Pn,其中1<=n<=100Pi为充值i元获得的短信条数。1<=Pi<=1000,1<=n<=10
- 华为OD机试E卷 --最多获得的短信条数--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入描述第一行客户预算M,其中0≤M≤10^6第二行给出售价表,P1,P2,…Pn,其中1≤n≤100,Pi为充值i元获得的短信条数。1≤Pi≤1000,1≤n≤100输出
- 演讲 | 学好语文的经验介绍
圆弧创意工作室
写作经验分享
领航志愿者:朱元虎丨学好语文的经验介绍原创朱元虎真爱明天II第一代大学生助学计划2022年05月09日08:00北京生命之光:我学习语文的经验北京大学中文系朱元虎引子亲爱的同学们,各位老师,各位家长,大家晚上好,今天又是周六的晚上8点,我们ICAN开放麦又跟你如期见面了。我相信我们ICAN开放麦的粉丝们在前面的节目里面一定非常开心,学到了非常多的东西,也听到了很多有趣的故事。这几期都是我们第一代大
- 国产工作平替软件推荐
CIb0la
程序人生
“免费”的开源是一方面,国产工作效率软件的发展这两年也做的相当不错。因为有些时候,用无可用,只能使用国产软件怎么办呢?所以介绍一些国产效率软件。Flomo(浮墨笔记)/元思笔记支持全端,够轻够小够用,不付费也可以用。毕竟“卡片”,每张也就200-300字而已。IOS和安卓备机之间有时候只是简单传递个文字,这个很方便。Lattics/钉钉个人版Lattics和Obsidian最大区别在于,把“一些麻
- 国内领先的AI智能体平台大比拼
zhulangfly
AI人工智能智能体
在当今人工智能飞速发展的时代,AI智能体平台如雨后春笋般涌现,为各行业带来了前所未有的创新机遇。今天,我们就来深入了解一下国内几家做得相当出色的AI智能体平台,包括百度的文心智能体平台、阿里巴巴的魔塔智能体平台、腾讯的元器智能体开放平台以及字节跳动的扣子AI平台,看看它们各自都有哪些独特之处,以及在市场中的表现如何。一、百度文心智能体平台详细介绍百度文心智能体平台依托百度强大的人工智能技术研发实力
- 数据产品交易市场|2024年度监测报告
数据
根据遇见数据集平台监测数据分析,截止2024年12月底,数据交易市场总披露交易金额突破550亿元,总挂牌数据产品超4万个。超2000家企业供应数据,其中在多家交易所上架的企业占比17%。想要了解更多信息,请打开:五号数据雷达https://www.5radar.com/dplists/news/137462
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
人工智能
DeepSeek-V3实在是太便宜了,就跟不要钱似的:每百万输入tokens0.1元(缓存命中)/1元(缓存未命中),每百万输出tokens2元跟其他模型相比,DeepSeek-V3的性价比非常高,只能用“真香”来形容。Sealos推出的AI聚合代理服务SealosAIProxy为用户提供了便捷的AI模型访问通道,其中就包含了DeepSeek-V3模型。而且通过SealosAIProxy使用这些模
- 储值免单的数学问题
howeres
Math
问题条件:商品下单时,提供优惠项:结算价格3倍进行储值,本单免单小明购买牛肉面26元,使用了优惠项,储值78元,本单免单.在第二次购买牛肉面时,价格降为19.9元请问,小明前一天是否受降价影响?不受影响请给出具体理由,受影响请给出亏损金额.分析储值免单,实际等价于:充3送1,送完当即扣款假设:充300送100,得400充30送10,得40每次都购买30的商品,充300后使用余额和每次都临时充30送
- 半导体、芯片、人工智能、智能驾驶汽车的趋势
不爱原创的Yoga
人工智能汽车
1.市场增长与需求汽车半导体市场:预计到2025年,中国汽车半导体市场仍将保持稳健增长态势,AI和能源将成为未来最重要的两大变革因素。2023年中国汽车电子芯片行业市场规模约为820.8亿元,预计2024年有望增至905.4亿元左右。随着新能源汽车和智能化的快速发展,一些新的半导体技术在中国汽车领域迅速应用,如集中式架构和高性能处理器需求正日益增加。AI芯片市场:随着AI技术的不断普及和应用场景的
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 量子计算:编程世界的未来战场
大梦百万秋
知识学爆量子计算
引言:让代码进入量子维度?你是否曾经在编写复杂算法时,遇到需要巨大的计算资源才能完成的任务?传统计算机虽然快速,但有些问题对它们来说依然是巨大的挑战,比如大规模数据处理、密码破解、分子模拟等等。而现在,量子计算,作为未来的“超级计算机”,正在悄然改变这一切。量子计算听起来就像是科幻电影中的情节,但实际上,它已经在许多领域取得了令人瞩目的进展。与传统计算机不同,量子计算机的运算基于量子物理学原理,利
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 用Python实现概率语言模型(2-元语法模型)
peanutwang
python语言模型
首先构造一个语料库,由6句话组成,每句话3个字。corpus='她很香她很菜她很好他很菜他很好菜很好'.split()构造一个字典,存储一元的字数Count1={}遍历语料库,把每个字出现的次数存储在字典中。forsentenceincorpus:forwordinsentence:ifwordinCount1:Count1[word]+=1#如果word在字典中存在else:Count1[wor
- 学习第七十四行
不是只有你能在乱世中成为大家的救世主
学习运维服务器经验分享qt
qt调用信号与槽机制:MOC查找头文件中的signal与slots,标记出信号槽。将信号槽信息储存到类静态变量staticMetaObject中,并按照声明的顺序进行存放,建立索引。connect链接,将信号槽的索引信息放到一个双向链表中,彼此配对。emit被调用,调用信号函数,且传递发送信号的对象指针,元对象指针,信号索引,参数列表到active函数。active函数在双向链表中找到所有与信号对
- 面试-业务逻辑2
查士丁尼·绵
算法与数据结构python
应用给定2个数组a、b,若a[i]==b[j],则记(i,j)为一个二元数组,求具体的二元数组及其个数。实现a=input("请输入数组a的元素个数:")#print(a)a_list=list(map(int,input("请输入数组a的元素,以空格隔开:").split()))#print(a_list)b=input("请输入第数组b的元素个数:")b_list=list(map(int,i
- 通达信5分钟.lc5和.lc1文件格式
weixin_30767835
python数据结构与算法c#
一、通达信日线*.day文件文件名即股票代码每32个字节为一天数据每4个字节为一个字段,每个字段内低字节在前00~03字节:年月日,整型04~07字节:开盘价*100,整型08~11字节:最高价*100,整型12~15字节:最低价*100,整型16~19字节:收盘价*100,整型20~23字节:成交额(元),float型24~27字节:成交量(股),整型28~31字节:上日收盘*100,整型二、通
- Prometheus 时序数据
一路向东_
云原生prometheusprometheus数据库
一时序索引Prometheus存储的是时序数据,时间戳(timestamp)来源于服务端本地的系统时间。Prometheus使用Unix时间戳(即自1970年1月1日00:00:00UTC起经过的秒数)表示时间。数据格式:{=,=,...}({...}里的就是标签部分),显然数据格式就是由指标名字和一组KV标签构成,其实还得加上时间戳,构成三元组(metric,labelset,timestamp
- 链表应用-一元多项式
菜哥万岁万岁万万岁
数据结构链表数据结构c++
链表应用一元多项式说明一元多项式A(x)=a1xe1+a2xe2+a3xe3+a4xe4+⋯一元多项式\\A(x)=a_1x^{e_1}+a_2x^{e_2}+a_3x^{e_3}+a_4x^{e_4}+⋯一元多项式A(x)=a1xe1+a2xe2+a3xe3+a4xe4+⋯可以用链表存储,每个结点保存的信息为每个项的系数和指数多项式的项项的定义//多项式的一项(只要数据部分)classterm{
- 宠物用品企业的智选之道:看板软件选品指南
团队协作工具
中国宠物市场规模持续扩大,预计到2024年,中国宠物消费市场规模将突破3000亿元大关,同比增长率达到5.5%。同时,全球宠物用品市场规模也在稳步增长,2024年达到1625.9亿元,预计未来几年将保持较高的增长率。宠物用品行业蓬勃向上,如何达到满足消费者的用品选择?宠物用品企业利用看板软件进行选品分析,可以系统地跟踪市场动态、评估产品性能、分析消费者需求,从而做出更加明智的选品决策。以下是一个详
- # 如何解决 App Store 审核中的 4.3(a) 问题:Guideline 4.3(a) - Design - Spam
A小椰子
iosappappstoreios审核
如何解决AppStore审核中的4.3(a)问题:Guideline4.3(a)-Design-Spam4.3(a)审核问题是指:你的应用与其他开发者提交的应用在二进制文件、元数据和/或概念上存在相似之处,仅有微小差别。这通常会导致你的应用被视为垃圾应用而被拒绝。一、理解4.3(a)问题4.3(a)审核问题的核心是苹果认为你的应用与其他应用过于相似。这种情况常见于“马甲包”,即修改已有应用的部分元
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 【高级开发进阶】总篇
vip1024p
java
未来一年我可能会以这个为主,写博文,待全部写完后会出书一本,希望大家有所收获第一篇性能调优专题****第1章Jvm1.1JVM类加载机制1.1.1启动类、扩展类、应用程序类加载器1.1.2手写自定义类加载器1.1.3双亲委派模型及如何打破1.2JVM内存模型1.2.1堆内存分代机制及对象生命周期1.2.2线程栈及栈帧内部结构1.2.3方法区(元空间)及常量池1.2.4程序计数器1.2.5本地方法栈
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep