- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
AIBigModel
人工智能
来源:暗涌Waves,整理:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Ha
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- ospf的内容解析
ZHGJX-春分时节爱中分
智能路由器网络
当然,以下是您提供的OSPF(开放最短路径优先)接口配置信息的翻译:---**OSPF进程1,路由器ID为12.1.1.2****接口信息**区域:0.0.0.0(未启用MPLSTE)**接口:12.1.1.2(千兆以太网0/0/1)**-成本:1-状态:BDR(备份指定路由器)-类型:广播-最大传输单元(MTU):1500-优先级:1-指定路由器:12.1.1.1-备份指定路由器:12.1.1.
- 如何合理拆分微服务
微服务
**在微服务架构中,要想做到合理拆分,需要重点关注:服务边界划分、业务耦合度控制、数据隔离策略、服务自治能力、团队组织协调。它们共同决定了微服务架构的灵活度与可维护性,其中,服务边界划分是最基础且最关键的一步。它要求我们从业务领域出发,将高度聚合、密切相关的功能抽离成单独服务,避免粗放的“大而全”式切分。在实际落地时,应当以业务语义、数据交互频率等为出发点,力求服务粒度既不会过细导致管理成本飙升,
- C++ 模板初阶总结
矛取矛求
c++开发语言
1.泛型编程目标:编写与类型无关的通用代码,提高代码复用性。问题:传统函数重载需为每种类型编写重复代码,维护成本高。解决方案:使用模板(Template),通过编译器自动生成特定类型的代码。2.函数模板定义:templatevoidSwap(T&left,T&right){ Ttemp=left; left=right; right=temp;}typename或class声明模板类型参数。
- 2024年最佳Todo清单APP:从效率到协作全覆盖
任务管理工具todolist
大量研究表明,人类大脑并不擅长同时处理多项任务。在多任务处理时,大脑需要频繁切换注意力,每次切换都会消耗时间和精力,这种现象被称为“切换成本”(SwitchingCost)。心理学家Rubinstein、Meyer和Evans在2001年的研究中指出,任务切换会导致思维停顿,延长完成任务的时间。他们发现,在处理复杂任务时,效率可能下降高达40%。此外,Cowen(2001)的研究进一步指出,人类的
- 外包项目的三大来源渠道及注意事项
后端
外包项目的三大来源渠道及注意事项在上一篇文章中,我们介绍了什么是外包以及外包的基本模式。今天,让我们深入探讨外包项目的主要来源渠道及其特点。一、朋友渠道特点:关系基础公司小伙伴推荐熟人介绍客户邀请合作优势:信任度高沟通成本低合作较为顺畅风险提示:避免因私人关系影响专业判断需要明确划分公私界限保持适当的业务距离二、家人渠道特点:亲朋帮忙情感因素强责任感较重注意事项:优势信任度最高沟通零障碍合作意愿强
- 4-001:MySQL 中的索引数量是否越多越好?为什么?
盖盖衍上_染染熊_代码集
00-刷题mysql数据库
MySQL中的索引并不是越多越好,索引数量要合理控制!过多索引的影响增加存储开销每个索引都会占用额外的磁盘空间,索引多了,存储成本增加。降低INSERT、UPDATE、DELETE性能任何涉及数据修改的操作,都需要同时更新索引,影响性能。示例:INSERTINTOusers(id,name)VALUES(1,'Tom');,如果users表有多个索引,则插入时每个索引都需要更新,影响插入速度。可能
- 对象存储.阿里云OSS、腾讯云COS 、亚马逊S3、华为云OBS对比分析?
学博成
技术阿里云云计算
对象存储是一种将数据存储为独立对象,并使用RESTfulAPI或其他接口进行访问的存储方式。目前市场上有多种对象存储产品,以下是其中一些知名的产品:1.阿里云OSS(ObjectStorageService)简介:阿里云OSS是一款海量、安全、低成本、高可靠的云存储服务,提供99.9999999999%(12个9)的数据持久性,以及99.995%的数据可用性。特点:海量存储:适合存储各种类型的大数
- DeepSeek 加持!IvorySQL 文档智能助手正式上线!
数据库deepseek开源
DeepSeek加持!IvorySQL文档智能助手正式上线!"那个配置参数到底在第几章?"——正在部署IvorySQL的运维工程师小“I”,第5次按Ctrl+F搜索文档。从版本差异到参数说明,在浩如烟海的技术文档中精准定位信息,曾是所有开发运维人员们的必修课。技术文档是我们了解开源项目的必要渠道之一,但文档内容繁杂,学习成本巨大。IvorySQL作为一款基于PostgreSQL研发的兼容Oracl
- 独立开发者 5 个月,月收入赶超北京工资,我的一点心得
秦少卫
开源编辑器
大家好,我是一名开源项目作者,也是一名独立开发者,今年5月份我从北京离职,回到老家河北,开始了自己的独立开发之路,最近几个月的收入慢慢赶超了北京的工资,自己心态上也有很大的变化,把自己的一点心得分享出来,希望一起交流,也给准备踏上独立开发的朋友一点点参考。目前主要的盈利模式是为其他研发团队提供可二次开发的在线图片编辑器源码,省去基础功能的研发成本,附带提供定制功能开发,目标就是帮助企业快速搭建在线
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- micropython入门指南电子版_MicroPython入门指南
EchiTie
Python是一种脚本语言,是一款非常容易使用的脚本语言,语法简介、使用简单、功能强大、容易扩展。有非常多的库可以使用。网络功能和计算功能也很强。方便的和其他语言配合使用。完全开源,受到原来越多的开发者青睐。不过由于受到硬件成本、运行性能、开发习惯等原因。没有在通用嵌入式方面得到太多应用。所以microPython应运而生。MicroPython可以在多种嵌入式硬件平台上运行,目前已经有STM32
- 线路板打样中的PCB拼版技术如何为中小企业节省30%以上成本?
捷配科技
制造pcb工艺捷配
线路板打样和批量生产的成本控制对中小企业来说非常关键,本文将解析PCB拼版的五大核心价值,揭示中小企业在SMT贴片环节的降本秘诀。一、破解线路板打样的成本困局中小企业在小批量生产时常面临两难选择:单独加工导致设备利用率低下,而传统拼版方案又存在设计缺陷。二、PCB拼版技术的五大降本优势1.设备利用效率倍增通过二合一或四合一拼版设计,SMT产线单次印刷可完成多板加工。实测数据显示,采用V-CUT拼版
- 用Acceldata数据可观测性方案管理云数据平台Snowflake
茵赛飞3D CAD数据转换软件
Acceldata大数据云计算大数据数据库数据挖掘
一、云数据平台Snowflake简介在现代数据堆栈的所有部分中,没有一个像云数据平台Snowflake一样迅速崛起。虽然作为Databricks、AmazonRedshift和GoogleBigQuery等云数据库的一部分,云数据平台Snowflake短短十年间凭借易于启动、低运营成本、即时和近乎于无限的可扩展性等优点赢得了6500多家企业客户的信赖并获得了12亿美元的年收入。二、Snowflak
- 开发策略选择:如何为项目找到最优路径?
Lill_bin
pythonjava开发语言算法宽度优先
在软件开发过程中,开发策略的选择直接决定了项目的成败。无论是初创团队的快速迭代,还是企业级系统的长期演进,合理的策略能够平衡效率、质量和成本,同时降低风险。本文将深入探讨主流开发策略的核心特点、适用场景及选择逻辑,并结合实际案例提供选型建议。一、开发策略的核心类型与特点瀑布模型(Waterfall)特点:线性开发流程(需求→设计→开发→测试→交付),阶段严格分离,文档驱动。适用场景:需求明确、变更
- GPU底层优化的关键语言(深入解析PTX);PTX相比汇编语言的核心优势
AI-AIGC-7744423
rust开发语言后端
PTX作为英伟达GPU的底层语言,既是性能优化的利器,也是打破生态垄断的突破口。其“类汇编”特性赋予开发者对硬件的极致控制权,但高昂的开发成本与生态依赖仍制约其普及。随着AI技术的介入和开源生态的成熟,PTX或将成为下一代算力竞争的关键战场。一、PTX的技术定位与核心特性中间指令集的角色PTX(ParallelThreadExecution)是英伟达GPU架构中的中间指令集架构,介于高级编程语言(
- 浅谈基于saas模式的ERP优劣以及未来发展分析
微笑的曙光(StevenLi)
业务发展javamongodbsql
SaaS模式在ERP中的应用已经越来越广泛,尤其是在中小企业和初创企业中。SaaSERP通过云计算技术,将ERP系统部署在云端服务器上,企业用户只需通过互联网浏览器即可访问和使用,无需在本地安装和维护复杂的软件和硬件基础设施。这种模式大大降低了企业的初期投资成本,提高了业务的灵活性和响应速度。同时,SaaSERP还支持多租户架构,多个用户可以同时使用同一套系统而互不干扰,进一步提高了资源的利用率。
- Linux之bash常用命令
Ssaty.
linuxbashunix
第1关:linux之bash常用命令基本知识任务描述本关任务:根据基本知识点,回答一些选择题。相关知识为了完成本关任务,你需要掌握:1.Linux简单介绍2.Linux的优缺点3.操作系统介绍4.UNIX操作系统5.MINIX操作系统6.GNU计划7.POSIX标准8.程序学习方法9.为什么学习Linux10.Linux发展历史Linux简单介绍Linux核心理念:万物皆文件。Linux:是一个内
- 目前人工智能的发展,判断10年、20年后的人工智能发展的主要方向,或者带动的主要产业
meisongqing
人工智能
根据2025年的最新行业研究和技术演进趋势,结合历史发展轨迹,未来10-20年人工智能发展的主要方向及带动的产业将呈现以下六大核心趋势:一、算力革命与底层架构优化核心地位:算力将成为类似“新能源电池”的基础设施,支撑大模型迭代和实时交互。中国通过DeepSeek等技术创新(如MLA注意力机制、FP8混合精度训练)突破算力瓶颈,实现与美国顶尖模型性能对标,成本降低至558万美元/项目。技术突破:量子
- 人形机器人进入工厂
百态老人
笔记人工智能
人形机器人已进入工厂,主要应用于汽车制造、智能制造等领域,具备提高生产效率、降低成本等优势,但面临技术成熟度、成本控制等挑战,市场前景广阔。人形机器人进入工厂的现状国内外企业的实践特斯拉、优必选等企业已开始在工厂中部署人形机器人,如特斯拉的Optimus和优必选的WalkerS,分别用于汽车制造和工业领域。这些实践表明人形机器人已经在实际生产环境中得到应用,尤其是在需要高精度和高重复性任务的场景中
- AI Agent在企业预算管理与成本控制中的应用
SuperAGI2025
DeepSeek人工智能大数据ai
AIAgent在企业预算管理与成本控制中的应用关键词:AIAgent、企业预算管理、成本控制、机器学习、预测模型、优化算法摘要:本文深入探讨了AIAgent在企业预算管理与成本控制中的应用。通过详细的背景介绍、核心概念解析、算法原理讲解和实际案例剖析,本文展示了AIAgent如何通过智能预测和优化算法,为企业带来更高的效率和精确度,从而实现成本控制和预算优化的目标。背景介绍核心概念AIAgent:
- Spring Boot中实现多租户架构
java技术小馆
springboot架构后端java
SpringBoot中实现多租户架构在当今的企业级应用开发中,多租户架构已经成为一项关键技术,尤其是对于需要服务多个客户群体的SaaS(软件即服务)系统。多租户架构的核心思想是通过共享资源来降低运营成本,同时确保各个租户的数据和功能互不干扰。从架构设计的角度看,多租户有三种常见模式:独立数据库、表级隔离和共享表。不同的模式适用于不同的业务场景。例如,独立数据库适合对安全性要求极高的客户,表级隔离和
- 11B模型拿下开源视频生成新SOTA!仅用224张GPU训练,训练成本省10倍
量子位
关注前沿科技量子位224张GPU,训出开源视频生成新SOTA!Open-Sora2.0正式发布。11B参数规模,性能可直追HunyuanVideo和Step-Video(30B)。要知道,市面上诸多效果相近的闭源视频生成模型,动辄花费数百万美元训练成本。而Open-Sora2.0,将这一数字压缩到了20万美元。同时,此次发布全面开源模型权重、推理代码及分布式训练全流程,开发者们可以看过来!GitH
- DeepSeek、Grok、ChatGPT4.5和Gemini四大AI模型深度解析:谁才是你的最佳助手
lifire_H
人工智能chatgptDeepSeekGrok
在AI技术爆发的今天,DeepSeek、Grok、ChatGPT4.5和Gemini这四大主流模型各显神通。本文大白话帮你理清它们的优缺点,看完就知道该选谁干活了!一、四大金刚的看家本领1.DeepSeek:省钱小能手这个国产AI最擅长精打细算,训练成本只要557万美元(其他家动不动上亿),就像用奥拓的钱造出了奥迪。它在金融、医疗等专业领域特别灵光,处理中文合同比老外AI强得多。不过看图能力还停留
- 软件或互联网项目中的风险管理怎么做
项目管理
软件或互联网项目中的风险管理的核心在于全面识别风险、科学评估风险、动态监控调整。其中,全面识别风险要求项目团队在项目启动前就系统地调查内外部可能影响项目进度、质量、成本及用户体验的各类风险;科学评估风险则需要借助定性与定量相结合的方法,将风险发生的概率与影响程度转化为具体数据,为风险优先级排序提供依据;动态监控调整强调在项目执行过程中实时追踪风险变化,及时启动应急预案,从而确保项目在面对不确定性时
- 【大模型新书】基于RAG的生成式AI:使用LlamaIndex、Deep Lake和Pinecone构建自定义的检索增强生成管道
AI大模型-大飞
人工智能大模型学习AI产品经理语言模型大模型RAG大模型教程
书籍简介最小化AI幻觉,构建准确的自定义生成式AI管道,利用嵌入式向量数据库和集成的人类反馈来实现检索增强生成(RAG)购买本书的纸质版或Kindle版即包含免费的PDF格式电子书主要特点实现RAG的可追溯输出,将每个响应与其源文档链接,构建可靠的多模态对话智能体在管道中集成RAG、实时人类反馈改进和知识图谱,交付准确的生成式AI模型在动态检索数据集与微调静态数据之间平衡成本与性能书籍描述基于RA
- 大模型赋能智慧司法,创业者如何推动法律服务普惠化?
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型,智慧司法,法律服务,普惠化,人工智能,自然语言处理,法律科技1.背景介绍近年来,人工智能(AI)技术蓬勃发展,特别是大模型的涌现,为各行各业带来了革命性的变革。其中,智慧司法领域展现出巨大的潜力,大模型能够有效提升法律服务效率,降低法律服务门槛,推动法律服务普惠化。传统法律服务模式面临着诸多挑战:服务成本高昂:律师咨询和诉讼费用对普通民众来说往往难以负担。服务效率低下:法律文件审查、合同分
- 嵌入式系统概述
weixin_48707198
嵌入式
1.1嵌入式系统概述·嵌入式系统的定义嵌入式系统是以应用为中心、以计算机技术为基础、软件硬件可剪裁、适应于对系统功能、可靠性、成本、体积、功耗等有严格要求的专用计算机系统。这个定义主要包含两个信息,一是嵌入式系统是专用计算机系统,因此必须要有处理器,具备计算机系统的基本特征。二是嵌入式系统的功能是有严格要求并按照指定的应用而设计的。123·嵌入式系统应用领域根据嵌入式系统的应用领域有交通管理、工控
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement