USDA食品数据库分析

%pwd
u'/Users/zhongyaode'
import numpy as np
import pandas as pd
path='/Users/zhongyaode/'
import  json
from pandas import Series,DataFrame
#加载数据
db = json.load(open('/Users/zhongyaode/pythonbook/ch07/foods-2011-10-03.json'))
len(db)
6636
#db每个条目中都是一个含有某种食物全部数据的字典, nutrients字段是一个字典列表,
#其中的每个字典对应一种营养成分
db[0].keys()
[u'portions',
 u'description',
 u'tags',
 u'nutrients',
 u'group',
 u'id',
 u'manufacturer']
db[0]['nutrients'][0]
{u'description': u'Protein',
 u'group': u'Composition',
 u'units': u'g',
 u'value': 25.18}
nutrients=DataFrame(db[0]['nutrients'])

nutrients[0:7]

#在将字典列表转换为DataFrame时,可以只抽取其中的一部分字段,这里取出
#食物的名称、分类、编号、以及制造商等信息

info_keys=['description','group','id','manufacturer']
info=DataFrame(db,columns=info_keys)

info[:5]

查看info的统计信息

info.describe()

#查看info字典的基本信息
info.info()

RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
description     6636 non-null object
group           6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.4+ KB
#通过value_counts查看食物类别的分布情况
pd.value_counts(info.group)[:10]
Vegetables and Vegetable Products    812
Beef Products                        618
Baked Products                       496
Breakfast Cereals                    403
Legumes and Legume Products          365
Fast Foods                           365
Lamb, Veal, and Game Products        345
Sweets                               341
Fruits and Fruit Juices              328
Pork Products                        328
Name: group, dtype: int64
pd.value_counts(info.description)[:3]
Bread, pound cake type, pan de torta salvadoran                                               1
MISSION FOODS, MISSION Flour Tortillas, Soft Taco, 8 inch                                     1
Lamb, domestic, shoulder, arm, separable lean and fat, trimmed to 1/8 fat, cooked, broiled    1
Name: description, dtype: int64
#为了对全部营养数据做一些分析,最简单的办法是将所有食物的营养成分整合到一个大表中
#分几步完成,首先,将各食物的营养成分列表转换成为一个DateFrame,并添加一个个表示
#编号的列,然后将该DataFrame添加到一个列表中,最后通过concat将这些东西链接起来
nutrients=[]
for rec in db:
    fnuts=DataFrame(rec['nutrients'])
    fnuts['id']=rec['id']
    nutrients.append(fnuts)

nutrients=pd.concat(nutrients,ignore_index=True)
nutrients.duplicated().sum()
14179
nutrients=nutrients.drop_duplicates()
nutrients.info()

Int64Index: 375176 entries, 0 to 389354
Data columns (total 5 columns):
description    375176 non-null object
group          375176 non-null object
units          375176 non-null object
value          375176 non-null float64
id             375176 non-null int64
dtypes: float64(1), int64(1), object(3)
memory usage: 17.2+ MB
#两个DataFrame对象中都有'group'和'description',为了明确到底谁是谁
#对他们进行重命名
col_mapping={'description':'food','group':'fgroup'}
info=info.rename(columns=col_mapping,copy=False)
info.info()

RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
food            6636 non-null object
fgroup          6636 non-null object
id              6636 non-null int64
manufacturer    5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.4+ KB
col_mapping={'description':'nutrient',\
             'group':'nutgroup'}

nutrients[:1]

nutrients=nutrients.rename(columns=col_mapping,copy=False)
#nutrients.info()
#nutrients=nutrients.rename(columns=col_maping,copy=False)
nutrients.info()

Int64Index: 375176 entries, 0 to 389354
Data columns (total 5 columns):
nutrient    375176 non-null object
nutgroup    375176 non-null object
units       375176 non-null object
value       375176 non-null float64
id          375176 non-null int64
dtypes: float64(1), int64(1), object(3)
memory usage: 17.2+ MB

nutrients[:4]

info[0:2]

#将info 和nutrients合并
ndata=pd.merge(nutrients,info,on='id',how='outer')
ndata.info()

Int64Index: 375176 entries, 0 to 375175
Data columns (total 8 columns):
nutrient        375176 non-null object
nutgroup        375176 non-null object
units           375176 non-null object
value           375176 non-null float64
id              375176 non-null int64
food            375176 non-null object
fgroup          375176 non-null object
manufacturer    293054 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 25.8+ MB
ndata.ix[30000]
nutrient                                       Glycine
nutgroup                                   Amino Acids
units                                                g
value                                             0.04
id                                                6158
food            Soup, tomato bisque, canned, condensed
fgroup                      Soups, Sauces, and Gravies
manufacturer                                          
Name: 30000, dtype: object
#根据营养分类得出的锌中位值
result=ndata.groupby(['nutrient','fgroup'])['value'].quantile(0.5)

%pylab inline
b=result['Zinc, Zn'].order().plot(kind='barh')


Populating the interactive namespace from numpy and matplotlib


/Users/zhongyaode/anaconda/envs/py/lib/python2.7/site-packages/IPython/core/magics/pylab.py:161: UserWarning: pylab import has clobbered these variables: ['info', 'rec']
`%matplotlib` prevents importing * from pylab and numpy
  "\n`%matplotlib` prevents importing * from pylab and numpy"
/Users/zhongyaode/anaconda/envs/py/lib/python2.7/site-packages/ipykernel/__main__.py:2: FutureWarning: order is deprecated, use sort_values(...)
  from ipykernel import kernelapp as app
USDA食品数据库分析_第1张图片
output_40_2.png
#现在可知道,各营养成分最为丰富的食物是什么
by_nutrient=ndata.groupby(['nutgroup','nutrient'])
get_maximum=lambda x:x.xs(x.value.idxmax())
get_minimun=lambda x:x.xs(x.value.idxmin())
max_foods=by_nutrient.apply(get_maximum)[['value','food']]
#让food小点
max_foods=max_foods.food.str[:50]
max_foods[:20]
nutgroup     nutrient        
Amino Acids  Alanine                             Gelatins, dry powder, unsweetened
             Arginine                                 Seeds, sesame flour, low-fat
             Aspartic acid                                     Soy protein isolate
             Cystine                  Seeds, cottonseed flour, low fat (glandless)
             Glutamic acid                                     Soy protein isolate
             Glycine                             Gelatins, dry powder, unsweetened
             Histidine                  Whale, beluga, meat, dried (Alaska Native)
             Hydroxyproline      KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
             Isoleucine          Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Leucine             Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Lysine              Seal, bearded (Oogruk), meat, dried (Alaska Na...
             Methionine                      Fish, cod, Atlantic, dried and salted
             Phenylalanine       Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Proline                             Gelatins, dry powder, unsweetened
             Serine              Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Threonine           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Tryptophan           Sea lion, Steller, meat with fat (Alaska Native)
             Tyrosine            Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
             Valine              Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Composition  Adjusted Protein               Baking chocolate, unsweetened, squares
Name: food, dtype: object

你可能感兴趣的:(USDA食品数据库分析)