- Redis集群部署指南:高可用与分布式实践
东窗西篱梦
redis分布式数据库
目录1.原理与理论2.背景与目的3.详细部署步骤(手动操作)步骤1:安装Redis5.0.4步骤2:配置Redis服务步骤3:修改关键配置步骤4:启动所有节点步骤5:构建集群步骤6:验证集群状态4.常见问题与解决方案节点无法加入集群集群槽位未完全分配主从切换失败客户端重定向错误5.总结与心得1.原理与理论Redis集群通过分片(Sharding)实现数据分布式存储,核心机制包括:槽位分配(Slot
- ShardingSphere-JDBC 详解
csdn_tom_168
ApacheShardingSphere数据库ShardingSphereJDBC学习
ShardingSphere-JDBC(原Sharding-JDBC)是ApacheShardingSphere的核心模块之一,定位为轻量级Java框架,在Java的JDBC层提供分库分表、读写分离、数据加密、影子库等分布式数据库增强能力。它直接操作JDBC接口,对应用透明,集成成本极低。以下是ShardingSphere-JDBC的详解:一、核心功能数据分片:分库分表:将逻辑上的大表(库)拆分成
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- Redis分片集群原理
1.为何需要分片集群?让我们先快速回顾一下Redis扩展的演进过程:单机Redis:最简单,但也最受限于服务器的物理资源(CPU、内存、网络带宽)。一旦宕机,服务完全中断。主从复制:通过设置一个主节点和多个从节点,实现了读写分离,提高了读并发能力,并提供了数据冗余以应对主节点故障。但所有数据仍存储在主节点上,内存容量和写性能依然受限于单个服务器,无法无限扩展。当业务数据量达到数十GB甚至TB级别,
- Amazon S3的分段上传,大文件上传,上传进度条,列出分段上传,中止分段上传,重启续传功能实现
你熬夜了吗?
开发语言javaspringbootspring前端vuevue.js
我们在上传大文件的时候往往需要采用分片的方式,Amazon虽然提供了这种方式,但是不能实现我们后端在(宕机/重启)之后导致的文件丢失,大文件上传到一半可能会丢失数据的问题。本文将利用本地线程池加数据库记录的方式,实现后端(宕机/重启)后恢复之前正在上传的文件,顺便利用SSE(ServerSendEvent)实现(宕机/重启)后进度条的还原。首先引入maven,我用的是下面这个,目前最新版本1.12
- Redis 的特性、工作机制与性能优化全解(含搭建实战教程)
文章目录二、Redis的核心特性三、Redis的工作机制解析单线程模型(性能为何强大?)数据结构是性能的关键持久化机制(数据如何存下来?)四、Redis性能优化实战1.优化内存使用2.提升并发性能3.使用分片/集群机制4.异步处理五、Redis搭建流程(Linux环境)1.下载与解压2.编译并安装3.修改配置文件(推荐复制一份)4.启动Redis5.客户端连接测试六、Redis运维技巧与监控命令七
- ElasticSearch中的分片是什么?
java1234_小锋
javaelasticsearch大数据搜索引擎
大家好,我是锋哥。今天分享关于【ElasticSearch中的分片是什么?】面试题。希望对大家有帮助;ElasticSearch中的分片是什么?超硬核AI学习资料,现在永久免费了!在Elasticsearch中,分片(Shard)是将数据拆分成更小的部分,允许在分布式环境中并行处理和存储数据的机制。它是Elasticsearch在水平扩展时用于管理大量数据的关键概念。主要概念:主分片(Primar
- ClickHouse【理论篇】02:ClickHouse架构和组件
做一个有趣的人Zz
ClickHouseclickhouse架构
ClickHouse的架构设计深度适配OLAP(在线分析处理)场景,通过列式存储、向量化执行、分布式分片与副本等核心技术,实现了对海量数据的高效分析与实时查询。以下从核心存储引擎、查询处理流程、分布式架构、元数据管理、复制与分片等维度详细解析其内部架构与关键组件。一、核心存储引擎:MergeTree系列ClickHouse的存储引擎是其性能的核心,其中MergeTree系列引擎(如MergeTre
- 亿级电商搜索引擎基石:Elasticsearch分片、副本与性能调优实战
lingRJ777
Java技术栈应用javabackendelasticsearchspringbootmicroservicessearchengine
亿级电商搜索引擎基石:Elasticsearch分片、副本与性能调优实战引言每年的“双十一”大促,海量用户涌入电商平台,搜索请求量瞬时可达平时的数十甚至上百倍。同时,数百万商品的库存、价格、促销信息也在以极高的频率更新。这种“读写混合”的超高并发场景,对商品搜索引擎提出了两大核心挑战:高可用与可扩展性:如何在流量洪峰下保证搜索服务7x24小时不间断,并且能够随着业务增长而平滑扩容?极致的查询性能:
- Softhub软件下载站实战开发(十三):软件管理前端分片上传实现
叹一曲当时只道是寻常
前端golang
文章目录Softhub软件下载站实战开发(十三):软件管理前端分片上传实现前言前端分片上传架构设计️核心组件实现1.上传资源组件(`uploadResource.vue`)2.分片上传逻辑实现3.资源管理组件(`editResource.vue`)文件大小格式化组件大整数处理方案总结Softhub软件下载站实战开发(十三):软件管理前端分片上传实现前言在之前文章中,我们实现了软件分片上传的后端接口
- Flink MongoDB CDC 环境配置与验证
Edingbrugh.南空
运维大数据flinkflinkmongodb大数据
一、MongoDB数据库核心配置1.环境准备与集群要求MongoDBCDC依赖ChangeStreams特性,需满足以下条件:版本要求:MongoDB≥3.6集群模式:副本集(ReplicaSet)或分片集群(ShardedCluster)存储引擎:WiredTiger(默认自3.2版本起)副本集协议:pv1(MongoDB4.0+默认)验证集群配置:#连接MongoDBshellmongo--h
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- 分布式数据库解决方案:ShardingSphere-JDBC 演示项目详解
吕真想Harland
分布式数据库解决方案:ShardingSphere-JDBC演示项目详解去发现同类优质开源项目:https://gitcode.com/,帮助读者理解其工作原理,应用场景及优势。项目简介是一个简单的SpringBoot应用,它展示了如何在实际应用中集成ShardingSphere-JDBC实现数据分片。该项目包含了一个完整的开发环境配置,包括数据库创建、实体类定义、ShardingSphere配置
- DeepSpeed zero1,zero2,zero3和FSDP区别详解
ALGORITHM LOL
python分布式
1.基本概念DeepSpeedZeROZeRO是由MicrosoftDeepSpeed团队开发的一种内存优化技术,旨在通过分片模型状态来训练超大模型,减少每个GPU的内存占用,同时避免传统模型并行(如张量并行或流水线并行)所需的代码修改。ZeRO分为三个阶段(Stage1、Stage2、Stage3),每阶段逐步增加分片的范围,从而进一步降低内存需求。FSDP(FullyShardedDataPa
- 区块链真的会是未来吗?
VV- Wxiaoxwen
软件工程开源软件软件构建
区块链很有可能是未来的重要技术趋势之一,其凭借去中心化、不可篡改等特性,在技术革新、应用拓展等方面展现出巨大潜力,有望对众多领域产生深远影响,尽管面临一些挑战,但发展前景广阔。具体分析如下:-技术发展前景良好:-性能不断提升:分片技术会不断成熟和完善,将区块链网络划分为多个分片,每个分片独立处理交易,可提高交易吞吐量和网络可扩展性。同时,共识机制也会持续创新,如“链上随机性”“交叉链共识”等算法,
- 分布式定时任务:Elastic-Job-Lite
Elastic-Job-Lite是一款由Apache开源的轻量级分布式任务调度框架,属于ShardingSphere生态体系的一部分。它专注于分布式任务调度,支持弹性伸缩、分片处理、高可用等特性,且不依赖中心化架构。一、基础(一)核心特性分布式协调通过ZooKeeper实现作业的分布式调度和协调,确保任务在集群环境中不重复、不遗漏地执行。分片机制支持将任务拆分为多个分片(Sharding)并行执行
- 主流视频流格式及 Vue3 实现方案
玛卡巴卡半夜不睡觉
html5前端vue.js
1.HLS(HTTPLiveStreaming)技术原理:基于HTTP的流媒体协议,使用.m3u8索引文件+.ts分片文件。特点:高兼容性(尤其iOS)、10+秒延迟、支持自适应码率。Vue3实现(video.js):npminstallvideo.jsvideojs-contrib-hlsimport{ref,onMounted,onUnmounted}from'vue';importvideo
- 【Java面试】讲讲Redis的Cluster的分片机制
用心分享技术
Java面试题java面试redis
RedisCluster分片机制详解1.分片核心机制:哈希槽(HashSlot)RedisCluster采用虚拟哈希槽分区,将数据分散到16384个固定槽位(slot)上,每个主节点负责一部分槽位。键的槽位计算方式为:slot=CRC16(key)%16384#仅计算键中`{}`内的内容(如`user:{1000}`仅哈希`1000`)分片流程示例:集群有3个主节点,槽分配为:节点A:0-5460
- Redis 单线程的“天花板”与集群的必要性
未来并未来
redis数据库缓存
虽然Redis以其单线程模型(主要是处理请求的核心逻辑)带来了极高的性能和简洁性,但这并不意味着它没有瓶颈。CPU瓶颈:当业务逻辑复杂,或者Redis执行大量计算密集型操作(比如使用Lua脚本进行复杂处理)时,单个CPU核心可能成为性能瓶颈。内存瓶颈:单个Redis实例能使用的内存是有限的。当数据量巨大,单个实例无法容纳所有数据时,就需要分片存储。网络I/O瓶颈:虽然Redis使用I/O多路复用技
- Elasticsearch性能调优金字塔:从分片与副本策略构建海量日志分析平台
lingRJ777
Java技术栈应用javabackendelasticsearchspringbootmicroserviceselk
Elasticsearch性能调优金字塔:从分片与副本策略构建海量日志分析平台引言在当前的微服务架构体系中,一个复杂的业务流程往往会横跨数十甚至上百个服务。当线上出现问题时,如何从每天产生的TB级海量日志中快速定位根源,成为衡量系统可观测性的关键。传统的日志聚合方案在面对如此巨大的数据量时,普遍会遇到两大核心挑战:高并发写入瓶颈:数千个服务实例同时产生大量日志,要求日志系统具备极高的写入吞吐能力,
- 秋招Day12 - 计算机网络 - IP
Java初学者小白
八股#计网java
IP协议的定义和作用?IP协议用于在计算机网络中传递数据包,定义了数据包的格式和处理规则,确保数据能够从一个设备传递到另一个设备,中间可能经过多个不同的设备(路由器)。IP协议有哪些作用?寻址:标识网络中的源和目标位置,确保数据准确地传送到目标设备。路由:IP协议负责数据包在网络中传输的路径,比如路由器可以目标IP地址信息匹配路由表中的下一跳。分片和重组:数据包在传输的过程中可能被分为多个小片,接
- GoldenDB简述
GoldenDB是国产的分布式数据库。它解决了分布式事务一致性问题。底层存储采用的是SharedNothing不共享数据(分片式存储)的分布式架构,各自节点持有各自的数据。不共享彼此数据,还有其他两种分布式架构,分别是Sharedisk,共享磁盘,例如NFS,网络文件系统,采用的就是这种架构。NFS是一种基于客户端-服务器架构的文件系统。它通过网络,特别是局域网,让多台计算机可以共享文件和目录。还
- 【MongoDB】基础知识全面解析:从入门到核心概念
韩悸桉
数据库mongodb数据库
一、MongoDB是什么?MongoDB是一种开源文档型NoSQL数据库,以灵活的JSON格式(BSON)存储数据,无需固定表结构,适合处理半结构化和非结构化数据。与传统关系型数据库(如MySQL)相比,它具有以下特点:灵活的数据模型:文档结构可动态调整,适应业务需求变化。水平扩展性:支持分片集群,轻松应对海量数据存储。高性能读写:通过索引优化和内存缓存提升查询效率。二、核心概念与术语对比Mong
- Redis 集群与分布式实现:从原理到实战
一切皆有迹可循
redisredis分布式数据库后端缓存
前言在大数据与高并发场景下,单节点Redis的容量与可用性已无法满足需求。Redis通过集群与分布式技术,实现了数据的分片存储与高可用部署,成为分布式系统的核心组件。本文将深入解析Redis集群的底层原理、架构模式与实战经验,结合代码示例与最佳实践,帮助开发者构建高性能、高可用的分布式缓存系统。一、集群基础架构与核心原理1.数据分片机制Redis集群采用哈希槽(HashSlot)实现数据分片,共有
- 【redis】介绍和安装
火龙谷
redisredis数据库缓存
介绍Redis是一款高性能的开源内存数据库,核心采用键值对(Key-Value)存储模型。其最大优势在于数据完全基于内存操作,读写速度远超传统磁盘数据库(内存访问速度可达磁盘的数千倍,固态硬盘仍有显著差距)。支持丰富的数据结构(字符串、哈希、列表、集合等),并非简单存储单一值。提供持久化机制(RDB快照/AOF日志),确保重启后数据可恢复。具备主从复制、哨兵高可用、集群分片等分布式能力,扩展性强。
- Vue3 - 详解播放m3u8视频流+HLS拉流推流完整方案,vue3如何播放m3u8格式文件实时视频播放教程(流媒体播放、直播视频流、实时摄像头监控视频流对接、后端服务器切片分片传输视频流边下边播)
王二红
+Vue3开发问题汇总vue3m3u8hlsvue3播放m3u8视频流教程vue播放m3u8文件vue3直播视频流播放摄像头实时监控画面视频流
前言如果您需要Vue2版本,请访问这篇文章。在vue3(PC端+移动端H5)项目开发中,实现m3u8+hls视频流播放、实时流媒体播放高性能无延迟方案及源码,vue3播放3mu8文件/直播视频流,实时流媒体播放需求、做直播实时传输播放、摄像头监控画面视频流、服务器后端视频切片分段返给前端+边下边播等需求,解决前端网页播放视频流卡顿加载慢、无法载入黑屏、播放不流畅、CORS跨域、安卓苹果浏览器兼容等
- 前端大文件上传解决方案
诸葛亮的芭蕉扇
前端javascriptvue.js
本文分享的内容是前端大文件上传的解决方案,文件上传是前端开发中常见的需求,特别是在处理视频、大型文档或数据集时。对于小文件上传不做详细介绍,在源码中已附带。大文件上传前置条件设置分片大小的值,即规定每个切片的大小设置文件大小阈值,即超过多少M判定为大文件大文件上传步骤计算文件md5的值前端对文件进行分割,每个切片中包含索引、切片内容、文件名称对切片集合进行遍历,按照顺序上传切片先校验切片是否已上传
- TCP/UDP通信调试实战工具
本文还有配套的精品资源,点击获取简介:TCP调试助手是一款旨在协助程序员和网络管理员进行TCP和UDP协议调试的网络通信工具。TCP作为一种面向连接、可靠的协议,具有诸如连接管理、数据分片与重组、流量和拥塞控制等特点。该工具支持TCPServer和TCPClient两种模式,允许用户模拟服务器和客户端进行通信测试。同时,它也支持UDP通信模式,适合实时性要求高而数据完整性要求不高的场合。通过TCP
- 《Redis可扩展:轻松应对数据增长与流量高峰》
猕员桃
redis数据库缓存
Redis可扩展:轻松应对数据增长与流量高峰在数字化时代,企业业务不断发展,数据规模呈爆炸式增长,流量高峰也频繁出现。面对这样的挑战,数据库的可扩展性成为关键因素。Redis凭借出色的可扩展能力,成为众多开发者应对数据增长与流量高峰的得力工具。接下来,我们将深入剖析Redis实现可扩展的核心技术与策略,探究它是如何在复杂多变的业务场景中保持高效运行的。一、水平扩展:数据分片的力量1.1数据分片的核
- 基于SpringBoot文件管理系统中的分片上传实现
分片上传一、引言现代Web应用中,大文件上传是一个常见需求。传统单文件上传方式在网络不稳定或文件过大时存在诸多问题。分片上传技术通过将大文件分割为小块进行传输,完美解决了大文件上传的痛点。本文将深入探讨分片上传的核心实现方案。二、功能概述分片上传功能用于处理大文件上传,支持断点续传、MD5校验秒传和并发上传,核心特点包括:断点续传:通过记录已上传分片,支持中断后继续上传秒传功能:基于文件MD5值实
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f