- 自立自强的江铃集团新能源,用科技创新实力圈粉
微视资讯
汽车
汽车行业正在经历从价格竞争和配置堆砌,向技术回归的深刻转型。消费者对“冰箱、彩电、大沙发”式的噱头已经逐渐失去兴趣,取而代之的是对核心技术和安全性能的理性关注。在这样的背景下,江铃集团新能源凭借深厚的技术积累和创新能力迅速赢得市场认可。作为拥有56年造车经验的企业,江铃集团新能源在整车研发、智能制造、智能网联、三电技术和车身轻量化等领域全面突破,不仅成功定位于纯电市场,还通过前瞻性的创新战略实现了
- 从零开始探索C++游戏开发:性能、控制与无限可能
南玖yy
C++游戏开发c
一、为何选择C++开发游戏?在虚幻引擎5渲染的次世代画面背后,在《巫师3》的庞大开放世界中,在《毁灭战士》的丝滑60帧战斗里,C++始终扮演着核心技术角色。这门诞生于1983年的语言,至今仍占据着游戏引擎开发语言使用率榜首(根据2023年GameDev调查数据)。其核心竞争力体现在:硬件级控制:手动内存管理允许精确控制资源分配,这对需要管理数百万多边形和4K纹理的3A游戏至关重要零成本抽象:模板元
- 前端面试:axios 是否可以取消请求?
returnShitBoy
前端
在实际工作中,取消请求的场景通常出现在以下几种情况中:用户导航离开页面:如果用户在请求数据的过程中快速切换到另一个页面,可以通过取消未完成的请求来优化性能。输入框的搜索提示:当用户在输入框中输入内容时,可以结合防抖的方式取消之前的请求,从而只保留最新的请求,避免发送过多的请求。取消请求的实现方式Axios提供了CancelToken的功能来实现请求的取消。以下是具体的代码示例:importaxio
- hive 中优化性能的一些方法
闯闯桑
hivehadoop数据仓库
在ApacheHive中,性能优化是一个重要的课题,尤其是在处理大规模数据时。通过合理的优化方法,可以显著提升查询速度和资源利用率。以下是一些常见的Hive性能优化方法:1.数据存储优化1.1使用列式存储格式推荐格式:ORC和Parquet。优点:列式存储格式具有更高的压缩率和查询性能。支持谓词下推(PredicatePushdown)和列裁剪(ColumnPruning)。示例:CREATETA
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- DPU的未来:技术趋势与挑战
绿算技术
DPU架构介绍科技gpu算力硬件工程缓存架构
随着数据中心的不断发展,DPU技术也在快速演进。以下是DPU未来的技术趋势与挑战:1.更高性能·支持更高的网络带宽(如400GbE、800GbE)和更低的延迟。2.更广泛的应用·在AI、5G、物联网等领域,DPU的应用将进一步扩展。3.软件生态的完善·开源工具和开发框架的普及,将降低DPU的开发门槛。4.能效优化·在提升性能的同时,进一步降低功耗,满足绿色计算的需求。总结DPU作为一种新兴的数据处
- 数据处理的革命性引擎
绿算技术
DPU架构介绍硬件工程科技缓存
随着数据量的爆炸式增长和计算需求的多样化,传统的CPU和GPU已经无法完全满足现代数据中心和高性能计算的需求。在这样的背景下,DPU(DataProcessingUnit,数据处理单元)应运而生。DPU是一种专为数据处理和网络加速设计的处理器,正在成为数据中心和云计算架构中的重要组成部分。接下来,由绿算技术与大家一起学习DPU有哪些功能、技术、原理等等内容。DPU的功能:数据处理的“全能选手”DP
- 计算机体系结构的五大流派,你知道几个?
绿算技术
计算机五大流派https信息与通信硬件工程缓存
在计算机的世界里,架构设计是决定性能和应用场景的关键。从经典的冯·诺依曼结构到现代的并行处理结构,每一种体系结构都有其独特的优势和适用场景。今天,我们绿算与大家一起聊聊计算机体系结构的五大流派,以及它们背后的厂商和应用领域。1.冯·诺依曼结构:现代计算机的基石冯·诺依曼结构是现代计算机的基础,几乎所有通用计算机系统都基于这一结构或其变体。它的核心特点是程序和数据共享同一存储空间,通过一条总线进行传
- 应用场景下的芯片分类
绿算技术
芯片类型科普探索html人工智能科技
从数据中心级别的高性能芯片,到消费类产品级别的日常应用芯片;从工业类产品级别的稳定可靠芯片,到汽车电子级别的高要求芯片;再到军工和国防级别的专用芯片,不同类型的芯片正以其独特的功能和应用场景,满足着多样化的需求。电路类型下的芯片分类·数字电路芯片:处理数字信号,广泛应用于计算机、通信设备等领域。·模拟电路芯片:处理模拟信号,常用于音频、视频处理等场景。·数模混合电路芯片:兼具数字和模拟信号处理功能
- JVM性能调优实战:从理论到线上问题排查
SuperMale-zxq
项目实战javapythonc++jvmjava-ee
JVM性能调优实战:从理论到线上问题排查线上系统突然变慢,CPU飙升,内存告警,业务超时……面对这些危机时刻,你是束手无策还是胸有成竹?本文将带你掌握JVM性能调优的核心方法,从理论到实战,解决真实环境中的性能难题。为什么大多数JVM调优都失败了?某电商平台的"双11"大促活动,系统突然响应缓慢,交易量锐减。运维团队紧急扩容,开发团队调整GC参数,架构师建议重启服务……一系列"标准操作"后,系统性
- 警惕!Ollama大模型工具的安全风险及应对策略
码事漫谈
AI安全
文章目录**Ollama的安全隐患:不容忽视的风险****未授权访问:门户洞开的风险****数据泄露:敏感信息的外泄****漏洞利用:历史遗留的隐患****安全加固:守护数据与服务的防线****限制监听范围:内网隔离的保护****配置防火墙规则:双向过滤的防御****实施多层认证与访问控制:密钥与白名单的双重保障****禁用危险操作接口:限制权限的策略****修复历史漏洞:及时更新的重要性****
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- 约克VRF中央空调如何?品质和性能如何?
消息快传
其他
不少别墅选的都是约克VRF中央空调,全屋舒适空气体验,不仅是制冷制热控温,还可以调节室内湿度、空气洁净度、空气新鲜度等等,属于高品质家电。
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- 外呼系统破局电话管控:AI电销机器人合规运营实战指南
ai_vx_3307623172
WX_3307623172AI机器人外呼中心人工智能机器人云计算语音识别服务器开源软件
随着运营商对电话卡管控日趋严格,某金融科技公司曾因单日外呼超限导致80%号码被封——这一案例暴露出AI电销机器人在效率与合规间的矛盾。但数据显示,采用合规策略的企业外呼接通率仍能保持38%以上,关键在于建立适配监管环境的智能外呼体系。一、破解封号困局的三大核心策略1.运营商白名单通道接入三大运营商均开放企业智能外呼专线,这类线路具备免封号特性。某教育机构接入电信AI-PaaS平台后,日均外呼量稳定
- 焊接机器人与线激光视觉系统搭配的详细教程
自动化专业爱好者
机器人opencv人工智能
以下是关于焊接机器人与线激光视觉系统搭配的详细教程,包含核心程序框架、调参方法及源码实现思路。本文综合了多个技术文档与专利内容,结合工业应用场景进行系统化总结。一、系统硬件配置与视觉系统搭建1.硬件组成焊接机器人系统通常由以下模块构成:线激光视觉传感器:用于发射线激光并采集焊缝图像(如英莱科技PF系列传感器,支持4K视频监控与微间隙焊缝检测)。机器人本体与焊枪:需支持外部轴控制,传感器通过夹具安装
- 以下列举了一些典型的JavaScript网页设计实例,它们展示了多样化的功能和交互体验,非常适合初学者及中级开发者学习借鉴如下:
一一代码
javascript
1.动态导航栏-功能描述:创建响应导航栏,当用户滚动页面时,导航栏固定在页面顶部,并显示当前页面部分。-技术点:-`window.scroll`事件监控页面滚动。-`classList`动态添加/移除CSS类。-`IntersectionObserver`检测元素是否进入视口。-示例代码:```javascriptwindow.addEventListener('scroll',()=>{cons
- ribbon负载均衡策略说明
高飞的Leo
ribbon负载均衡java
Ribbon负载均衡策略说明和比较类名说明特点使用场景RoundRobinRule基于轮询算法选择服务实例。简单、公平,每个实例被选择的机会均等。适用于所有服务实例性能相近的场景。RandomRule随机选择服务实例。简单、随机,每个实例被选择的概率相同。适用于需要随机负载均衡的场景。WeightedResponseTimeRule根据服务实例的响应时间分配权重,选择响应时间短的实例。动态调整权重
- 自动化测试:从入门到精通的全面指南
测试工程师成长之路
测试工程师成长之路自动化测试
一、引言在当今数字化时代,软件行业蓬勃发展,软件产品的更新换代愈发频繁。为了确保软件的质量和稳定性,测试工作变得至关重要。然而,随着软件规模的不断扩大和功能的日益复杂,传统的手工测试方法逐渐暴露出效率低下、容易出错等问题。自动化测试作为一种高效、可靠的测试手段,应运而生并迅速发展,成为现代软件测试领域不可或缺的一部分。自动化测试是指借助专门的测试工具和编程技术,将原本由人工执行的测试用例转化为机器
- 蓝易云 - nginx+lua+redis等架构演进
蓝易云
nginxluarediskubernetes容器云原生驱动开发
Nginx+Lua+Redis架构演进如下:基本架构:最初,使用Nginx作为反向代理和负载均衡器,将客户端请求分发到后端应用服务器。Nginx的高性能和低资源消耗使其成为处理大量请求的理想选择。引入Lua模块:随着业务复杂度增加,引入Nginx的Lua模块,可以在Nginx配置中嵌入Lua脚本,实现自定义的请求处理逻辑。这种方式可以将部分业务逻辑移至Nginx层,减轻后端应用服务器的压力。集成R
- 3D FFT在波束形成中的详细解释
DuHz
算法信息与通信信号处理
3DFFT在波束形成中的详细解释1.引言在雷达、声呐和无线通信等领域,为了从空间中获取目标或信号的方向信息,通常需要用到波束形成(Beamforming)技术。波束形成可以理解为一种通过数字信号处理手段,将天线阵列(或传感器阵列)接收的多路信号进行加权和,形成对特定方向(或多个方向)的增强或抑制,从而实现对目标/信号的方位估计与检测的技术。1.11D,2D,和3D波束形成1D波束形成通常针对线阵(
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- 自动化测试入门基础知识必看(超详细)
软件测试老莫
自动化测试测试工具单元测试自动化学习python
目录1初识自动化测试2自动化测试和手工测试有什么不同3什么是自动化测试4自动化测试和手工测试应用范围的对比5区别对待不同的测试阶段6如何评估测试工具7如何选择合适的测试工具总结重点:配套学习资料和视频教学1初识自动化测试如果以前没有做过自动化测试,那么就不了解自动化测试,可能会觉得自动化测试比较神秘,但是,我们在日常的计算机操作中,可能会碰到一些自动化处理的过程,这些过程和自动化测试比较接近。例如
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- 如何进行OceanBase 运维工具的部署和表性能优化
oceanbase
随着OceanBase数据库应用的日益深入,数据量不断攀升,单个表中存储数百万乃至数千万条数据的情况变得愈发普遍。因此,部署专门的运维工具、实施针对性的表性能优化策略,以及加强指标监测工作,都变得更为重要。以下为基于我们的使用场景,所采取的一些部署和优化措施分享。一、OCP部署升级1.OCP升级(1)4.2.1BP1升级到4.2.2,本来以为毫无波澜但是下载完毕一键包并完成前期准备工作启动后发现无
- AI大模型测试用例生成平台
王根生
测试开发测试用例质量保障AI编程nlp测试管理软件测试
AI测试用例生成平台项目背景技术栈业务描述项目展示项目重难点项目背景针对传统接口测试用例设计高度依赖人工经验、重复工作量大、覆盖场景有限等行业痛点,基于大语言模型技术实现接口测试用例智能生成系统。技术栈LangChain框架+GLM-4模型+PromptEngineering+Flask+Python+Bootstrap+jQuery业务描述用户在该平台上传Markdown形式的接口文档,点击生成
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不