用泊松分布解释 NGS 测序数据的 duplication 问题

不管从哪个角度看我们都希望测序仪产出的数据中duplicate 率尽量低。怎样降低 duplicate 率构建文库时,核酸提取质量要好,起始 DNA 量要足够多,建库过程中 PCR 循环数尽量少,可以的话构建 PCR-free 文库最好,防范于未然。

什么样的数据算是 duplicate

duplicate 就是一段序列的多个拷贝,以 PE 测序为例,用比对软件在将测序 reads 比对到参考基因组之后,如果有两对 reads 的 read1 和 read2 都完全比对到参考基因组上的相同位置,其中一对 reads 会被标记为 duplicate 。我画了一个示意图:

用泊松分布解释 NGS 测序数据的 duplication 问题_第1张图片
A B 这两对 reads 互相重复

  图中 A 和 B 这两对 reads 就是互相重复了,因为他们序列完全相同,这里说明一下,理论上 A 和 B 片段虽然两端被测出来的序列完全相同,中间没有被测到的碱基我们并不知道其序列是否也一样,可能相同也可能不同,我们不得而知,但是现在我们只拿到了文库片段 A/B 两端的序列,所以只能根据现有的信息判断 A/B 就是重复的,这也是 NGS 测序读长短的弊端之一。片段 C 虽然其中一向序列与 A B 重复,但是 C 片段文库片段比 A/B 长,另外一向的序列与 A/B 不同,因此不算 duplicate。


为什么会有 duplicate

要弄清楚这个问题,需要从 NGS 数据产出流程说起:

  1. 基因组核酸提取
  2. 基因组 DNA 随机打断,最常用的是超声打断。
  3. 被打断的 DNA 片段经历末端修复,3' 加A,两端加接头,选择特定大小片段文库进行 PCR 扩增(通过 PCR 扩增选择性提高加上了接头的文库分子数量)。
  4. 文库上机与 flowcell 上引物结合,经历桥式 PCR 扩增形成 cluster 。
  5. 进行 SBS 测序,光学信号捕获,生成序列。

我们首先假设基因组核酸提取是完整的基因组,打断是完全随机的(通常是这样的)。

在第 3 步,PCR 扩增时同一个文库分子会产生多个相同的拷贝,这是 duplicate 的主要来源(PCR duplicate)。

第 4 步,文库中 DNA 片段与 flowcell 上引物结合,来源于同一个 DNA 片段的多个拷贝都结合到 flowcell 上,这样会导致生成多个相同的 cluster,测序时也就有多个相同的序列被测出来,这些相同的序列就是 duplicate。

同在第 4 步,生成 cluster 时候一个 cluster 中的 DNA 链可能搭到旁边另外一个 cluster 生成位点上,又长成一个相同的 cluster ,这也是 duplicate 的一个来源(Hiseq4000之后的 flowcell 会有的 cluster duplicate)。

第 5 步,一个 cluster 测序时的捕获的荧光亮点由于形状奇特,可能被软件当成两个荧光点来处理,这也产生了两条完全相同的 reads。这个过程中可能产生完全相同的 reads。(光学 duplicate)

由此我们知道,PCR duplicate 特点是随机分布于 flowcell 表面,光学 duplicate 特点是它们都来自 flowcell 上位置相邻的 cluster 。cluster 的位置被记录在 Fastq 文件 @seq-id 这一行中。

下图的右下角还有一种 duplicate 来源,sister? 这种一个文库分子的两条互补链同时都与 flowcell 上的引物结合分别形成了各自的 cluster,最后产生的两对 reads 完全反向互补,map 到参考基因组也分别在正负链上的相同位置,有的分析中也算 duplicate,虽然我遇到的这种正负链测序结果通常是不算 duplicate 的。

用泊松分布解释 NGS 测序数据的 duplication 问题_第2张图片
illumina 平台四种 duplicate 来源

另外,据说 NextSeq 平台上出现过由于荧光信号捕获相机移动位置不够,导致 tile 边缘被重复拍摄,每次采样区域的边缘由于重复采样而出现的 duplicate,下图中蓝色点代表 duplicate ,在 tile 两侧明显富集。Illumina 公司回应说这没毛病,符合预期……

用泊松分布解释 NGS 测序数据的 duplication 问题_第3张图片
NextSeq 的重复采样问题
总结一下,duplicate 的产生即有可能来自实验过程,也有可能来自测序仪。

那么问题来了:PCR 将模板扩增了数千倍,但数据中 duplication 率只有 15%

  我曾经有这样的疑惑,为什么文库构建过程中的 PCR 将每个文库分子都扩增了上千倍,以 PCR 10个循环为例 2^10= 1024 ,但是实际测序数据中 duplication 率并不高(低于20%)。后来我看到一篇文章从统计概率的角度详细探讨了一下 duplication 率的影响因素,顺便一提,这个博主的故事也很令人佩服。

  PCR 的过程中不同长度的文库分子被扩增的效率不同(GC 太高或 AT 含量太高都会影响扩增效率),PCR 更倾向于扩增短片段的文库分子,这里先不考虑文库片段扩增效率的差异,把问题简化一下,假设所有文库分子扩增效率都相同。PCR duplicate 的主要来源是同一个文库分子的不同拷贝都在 flowcell 上生成了可以被测序的 cluster ,导致同一个分子的序列被测序仪读取多次。那么为何在每个分子都有上千个拷贝的情况下,实际却很少出现同一分子的多个拷贝被测序的情况呢?主要原因就是文库中 unique 分子的数量比被 flowcell 上引物捕获的分子数量多很多,直白点说就是 flowcell 上用于捕获文库分子的引物数量太少了,两者不在同一个数量级,导致很少出现同一个文库分子的多个拷贝被 flowcell 上引物捕获生成 cluster。

  假设文库中所有分子与引物的结合都是随机的,简化一下就相当于,一个箱子中有 n 种颜色的球(文库中的 n 种 unique 分子),每种颜色有 1000 个(PCR 扩增的,随 cycle 数变化),从这个箱子中随机拿出来 k 个球(最终测序得到 k 条 reads),其中出现相同颜色的球就是 duplicate,那么 duplication 率就可以根据有多少种颜色的球被取出 0,1,2,3…… 次的概率计算,可以近似用泊松分布模型来描述。

  以人全基因组重测序 30X 为例,PE150 需要约 3x10^8条 reads ,文库中 unique 分子数其实可以通过上机文库的浓度和体积(外加 PCR 循环数)计算出来,这里用近似值 3.5x10^10 个 unique 分子。每个 unique 分子期望被测序的次数是 3x108/3.5x1010 = 0.0085 ,每个 unique 分子被测 0,1,2,3… 次的概率如下图:

> x <- seq(0,10,1)
> xnames <- as.character(x)
> xlab <- "一个文库分子的所有拷贝被测序的次数"
> ylab <- "概率"
> barplot(dpois(x,lambda = 0.0085),
+ names.arg = xnames,
+ xlab = xlab,
+ ylab = ylab)

用泊松分布解释 NGS 测序数据的 duplication 问题_第4张图片

由于 unique 分子数量太多,被测 0 次的概率远高于 1 和 2 次,我们去除 0 次的看一下:

> x <- seq(1,10,1)
> xnames <- as.character(x)
> xlab <- "一个文库分子的所有拷贝被测序的次数"
> ylab <- "概率"
> barplot(dpois(x,lambda = 0.0085),
+ names.arg = xnames,
+ xlab = xlab,
+ ylab = ylab)

用泊松分布解释 NGS 测序数据的 duplication 问题_第5张图片

unique 分子被测序 1 次的概率远大于 2次及以上,即便一个 unique 分子被测序 2 次,我们去除 duplicate 时候还会保留其中一条 reads。

如果降低文库中 unique 分子数量到 4.5x10^9 个,PCR 循环数增加以便浓度达到跟上面模拟的情况相同,测序 reads 数还是 3x10^8 条,每个 unique 分子预期被测序的次数是 3x108/4.5x109 = 0.067 。

> x <- seq(1,10,1)
> xnames <- as.character(x)
> xlab <- "一个文库分子的所有拷贝被测序的次数"
> ylab <- "概率"
> barplot(dpois(x,lambda = 0.067),
+ names.arg = xnames,
+ xlab = xlab,
+ ylab = ylab)

用泊松分布解释 NGS 测序数据的 duplication 问题_第6张图片
unique 分子数降低,则 unique 分子被测序2次概率增大

unique 分子数量减少,被测序 2次的概率增大,duplication 率显然也会增高。

  到这里已经可以很明白的看出 duplication 率主要与文库中 unique 分子数量有关,所以建库过程中最大化 unique 分子数是降低 duplication 率的关键。文库中 unique 分子数越多,说明建库起始量越高,需要 PCR 的循环数越少,而文库中 unique 分子数越少,说明建库起始量越低,需要 PCR 的循环数越多,因此提高建库起始量是关键。

作者:wangpeng905
链接:https://www.jianshu.com/p/1e6189f641db
來源:
著作权归作者所有,本次转载已经获得作者授权。

你可能感兴趣的:(用泊松分布解释 NGS 测序数据的 duplication 问题)