数学考出好成绩(二)

中考数学应试技巧和注意事项

一、应试技巧

1、认真审题,不慌不忙,先易后难,不能忽略题目中的任何一个条件。

做题顺序:一般按照试题顺序做,实在做不出来,可先放一放,先做别的题目,不要在一道题上花费太多的时间,而影响其他题目;做题慢的同学,要掌握好时间,力争一次的成功率;做题速度快的同学要注意做题的质量,要细心,不要马虎。

2、考虑各种简便方法解题。选择题、填空题更是如此。

选择题

注意选择题要看完所有选项,做选择题可运用各种解题的方法,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法)。采用淘汰法和代入检验法可节省时间。

有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,要注意分类思想的运用;如果选项中存在多种情况的,要思考是否适合题意;找规律题可以多写一些情况,或对原式进行变形,以找出规律,也可用特殊值进行检验。对于选择题中有“或”和“且”的选项一定要警惕,看看要不要取舍。

填空题

(1).注意一题多解的情况。

(2).注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等;

(3).要注意是否带单位,表达格式一定是最终化简结果;

4.求角、线段的长,实在不会时,可以尝试猜测或度量法。

解答题

(1)注意规范答题,过程和结论都要书写规范。

(2)计算题一定要细心,最后答案要最简,要保证绝对正确。

(3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。

(4)解分式方程一定要检验,应用题中也是如此。

(5)解直角三角形问题,注意交代辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目要求。

(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。注意题目当中的等量关系,是为了构造方程,不等量关系是为了求自变量的取值范围,求出方程的解后,要注意验根,是否符合实际问题,要记着取舍。

(7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率。

(8)方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。

3、解各类大题目时脑子里必须反映出该题与平时做的哪个题类似,应反映出似曾相识的感觉。大题目先把会的一步或两步解好,解题时不会做的先放一放,最后再来解决此类提高问题。

(1)求二次函数解析式,第一步要检验,方可解第二步(第一步不能错,一错前功尽弃)。

(2)对于压轴题,基础好的学生应力争解出每一步,方可取得高分,基础稍差的应会一步解一步,不可留空白。例如:应用题的题设,存在题的存在一定要回答

(3)对于存在性问题,要注意可能有几种情况不要遗漏。

(4)对于动态问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。要注意点线的对应关系,用局部的变化来反映整体变化,通常利用平行得相似,注意临界状态,临界状态往往是自变量取值的分界线.

4、考虑到网上阅卷对答题的要求很高,所以在答题前应设计好答案的整个布局,字要大小适中,不要把答案写在规定的区域以外的地方。否则扫描时不能扫到你所写的答案。

5、调整好心理状态,解答习题时,不要浮躁,力争考出最佳水平。

树立自信,试题难易我不怕!试题难,遵循“你难我难,我不怕难”,试题易,遵循“你易我易,我不大意”的原则。

二、注意事项

1、注意单位、设未知数、答题的完整。

2、求字母系数时,注意检验判别式(否则要被扣分)。

3、注意物理、化学及其它学科习题与数学的联系,应反映出该题的公式,把此题公式与数学知识联系起来。此类习题不会太难,但容易错。

4、实际问题要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一个条件(包括括号里的信息),且注意解答完整。尤其注意应用题中的圆弧型实物还是抛物线型的实物。如果是圆弧找圆心,求半径。如果是抛物线建立直角坐标系,求解析式。

5、注意如果第一问条件少,无从下手时,应认真审题,画草图寻找突破口。解决二、三问时,注意考虑第一问的推导思路和结论来类比探究二、三问的解题思路。

6、注意综合题、压轴题格式要规范,答题要完整,尽量不被扣分。

7、因式分解时,首先考虑提取公因式,如只有两项考虑平方差公式,三项先看是不是完全平方式,如不是,考虑十字相乘。一定要注意最后结果要分解到不能再分为止。

8、找规律的题目,要重在找出规律,切忌盲目乱填。若是函数关系,解好一定要检验,包括自变量。若不是函数关系,应寻找指数或其它关系。

9、注意双解或多解的情况。方程解的两个答案,有时只有一个答案成立,而有些几何题,却要注意考虑两种情况。有两种答案的通常有:

(1)点在线段还是直线上,若在直线上一般要进行分类讨论

(2)等腰三角形注意,告诉一边要分为这一边是底还是腰,告诉一角要分为这一角是顶角还是底角。

(3)三角形的高(两种情况):锐角三角形和钝角三角形不一样。

(4)注意四边形的分类;以A、B、C、D四个点为顶点的四边形要注意分类:AB为一边,AB为一对角线。

(5)圆中①已知两圆半径,公共弦,求圆心距。

②已知弦,求弦所对的圆周角。

③已知半径和两条平行弦,求平行弦间的距离。

④一条弧所对的圆周角的度数有一个,一条弦所对的圆周角的度数有两个

⑤已知两圆半径,求相切时的圆心距(考虑内切、外切)。

⑥圆内接三角形,注意圆心在三角形内部还是外部

(6)动态问题中的等腰三角形问题,存在性问题中找相似三角形的题型。

10、注意复杂题目中的隐含条件,尤其在圆中和平面直角坐标系中,考虑用勾股定理、射影定理、解直角三角形、面积公式、斜边上的中线、直角三角形内切圆半径公式,直角三角形外接圆半径公式。

11、在三角函数的计算中,应把角放到直角三角形中,可以作必要的辅助线。

解直角三角形的应用中要熟悉仰角、俯角、坡角、坡度等概念。

12、三个视图之间的长、宽、高关系。即长对正,宽相等,高平齐。

13、熟悉圆中常见辅助线的规律,圆中常见辅助线:

(1)见切线连圆心和切点;

(2)两圆相交连结公共弦和连心线(连心线垂直平分公共弦);

(3)两圆相切,作连心线,连心线必过切点;

(4)作直径,作弦心距,构造直角三角形,应用勾股定理;

(5)作直径所对的圆周角,把要求的角转化到直角三角形中。

14、圆柱、圆锥侧面展开图、扇形面积及弧长公式

做圆锥的问题时,常抓住两点:

(1)圆锥母线长等于侧面展开图扇形的半径。

(2)圆锥底面周长等于侧面展开图扇形的弧长。

15、求解析式:

(1)正比例函数、反比例函数只要已知一个条件即可(2)一次函数须知两个条件

(3)二次函数的三种形式:一般式、顶点式、交点式

(4)抛物线的顶点坐标为

抛物线的对称轴为:

16、常用的定理

(1)射影定理(用相似)(2)直角三角形的有关定理

(3)中位线定理(4)圆中的圆心角、圆周角定理,切线定理

(4)平行四边形、矩形、菱形、正方形中的有关定理

17、反证法第一步应假设与结论相反的情况。

18、(1)是轴对称图形但不是中心对称的图形有:角、等腰三角形、等边三角形、等腰梯形、正n边形(n为奇数)

(2)是中心对称图形但不是轴对称图形有:平行四边形

(3)既是轴对称图形又是中心对称图形的有:线段、矩形、菱形、正方形、圆、正n边形(n为偶数)

19、n边形的内角和计算公式:外角和为:

20、平面图形的镶嵌要注意:一点处所有内角和为360°

21、如果要求尺规作图,应清楚反映出尺规作图的痕迹,否则会被扣分(一般作垂直平分线和角平分线较多)。

22、任意四边形的中点四边形都为平行四边形;

顺次连接对角线相等的四边形的中点的四边形是菱形;

顺次连接对角线互相垂直的四边形的中点的四边形是矩形

23、折叠问题:A要注意折叠前后线段、角的变化;B通常要设求知数,

24、注意特殊量的使用,如等腰三等形中的三线合一,正方形中的角,都是做题的关键。

25、面积问题,中考中的面积问题往往是不规则图形,不易直接求解,往往需要借助于面积和与面积差。

26、统计初步和概率习题注意:

(1)平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确,

方差计算公式:

标准差计算公式:

(2)认真思考样本、总体、个体、样本容量(不带任何单位,只是一个数)

在选择题中的正确判断。(注意研究的对象决定了样本的说法)

(3)概率:

①摸球模型题注意放回和不放回。若是二步事件,或放回事件,或关注和或积的题,一般用列表法;若是三步事件,或不放回事件,一般用树状图。

②注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。

27、乘法公式及常见变形:

28.综合题:

(1)综合题一般分为好几步,逐步递进,前几步往往比较容易,一定要做,中考是按步骤给分的,能多做一些就多做一些,可以多得分数。

(2)注意大前提和各小题的小前提,不要弄混。

(3)注意前后问题的联系,前面得出的结论后面往往要用到。

(4)从条件入手,可以多写一些结论,看哪个结论对作题有帮助,实在做不下去时,再审题,看看是否还有条件没有用到,需不需要做辅助线;从结论入手,逆向思维,正着答题。

(5)往往利用相似(8字形或A字形图),设求知数,构造方程,解方程而求解,必要时需做辅助线.函数图像上的点可借助函数解析式来设点,通常设横坐标,利用解析式来表示纵坐标。

带着必胜的信心,轻装上阵,你一定能取得优异的成绩,祝你金榜题名,蟾宫折桂!

��9˼T1

你可能感兴趣的:(数学考出好成绩(二))