1.数据模型
2.Bigtable的实现
Bigtable的实现主要包括三哥主要部分:
一个链接到每个客户端的库,
一个master服务器,
许多tablet服务器。
master服务器负责把tablets分配到tablet服务器上,检测tablet服务器的增加和超期,平衡tablet服务器负载,对GFS进行垃圾收集。此外,还能处理模式改变,例如列族的创建和删除。 每一个tablet服务器都管理一组tablets(一般每个tablet服务器上有10-1000个tablets)。tablet服务器处理对该服务器上tablets的读写请求,也能够将特别大的tablets分成几个。 一个Bigtable集群存储了大量的tables。每一个表都由一组tablets构成,每一个tablet包含一个行范围内的数据。初始情况下,每个表仅包含一个tablet。随着表大小的增长,它会自动分裂成多个tablets,默认每个表可以达到1GB。
3.Tablet定位
第一层是存储在Chubby的一个文件,它包含了root tablet的位置。Root tablet将所有tablet的位置包含在一个特殊的METADATA表中。每个METADATA tablet包含一系列的用户tablet位置。Root tablet只是METADATA表的第一个tablet,但是特殊之处在于其永远不会分裂,以此确保tablet位置层级不会超过3层。
在METADATA表中,每个tablet的位置信息都存放在一个行关键字下面,而这个关键字是由tablet所在的表的标示符和它的最后一行编码形成的。每个METADATA行在内存中存储了大约1KB的数据。通过限制tablets的大小为128MB,三层定位方案可以满足定位234个tablets(或者是2 61字节,按着每个tablet有128MB数据)。
客户端库会缓存tablet位置。如果客户端不知道一个tablet的位置,或者它发现缓存的位置信息不正确,则它会递归查询tablet的位置信息。如果客户端的缓存是空的,定位算法需要3次网络交互更新数据,包括一次Chubby文件的读取。如果客户端缓存过时,则定位算法需要6次网络交互才能更新数据,因为过时的客户端缓存条目只有在没有查到数据的时候才能发现数据过期(假设METADATA tablets移动的不频繁)。尽管tablet的位置信息存在内存中,不需要访问GFS,但是我们会通过客户端库预取tablet位置的方式来减少这种消耗:无论何时读取METADATA表都读取不止一个的METADATA tablets。
我们在METADATA表中还存储了次要的信息,包含与每个tablet有关的所有事件(如:什么时候一个服务器开始为该tablet提供服务)。这些信息对debugging和性能分析很有帮助。
4 Tablet分配
每个tablet只能分配给一个tablet服务器。Master记录了正常运行的tablet服务器、tablet服务器当前的tablet任务和没有被分配的tablet。当一个tablet没有被分配,并且有tablet服务器对于这个tablet有足够的空间可用时,master会通过向这个tablet服务器发送一个tablet载入请求分配这个tablet。
Bigtable使用Chubby跟踪tablet服务器的状态。当一个tablet服务器启动时,它在指定的Chubby目录下创建一个命名唯一的文件并获取一个互斥锁。Master监控这个目录(服务器目录)来检测tablet服务器。如果一个tablet服务器丢失了它的互斥锁,则停止它的tablet服务:例如,由于网络终端,造成了服务器丢失了它的Chubby会话。(Chubby提供了一个高效的机制使tablet服务器在不引入网络流量的情况下,能够检测它是否仍然持有它的锁。)只要文件依然存在,一个tablet服务器试图再次在这个文件上获取一个互斥锁。如果文件不存在了,则tablet服务器将不能再次提供服务,进而会kill掉自己。一个tablet服务器无论何时结束,它都会试图释放它的锁,以使master能够更加快速的重新分配它上面的tablets。
Master负责检测一个tablet服务器何时不能继续为它的tablets服务,并尽快将这些tablets重新分配。Master通过周期性的询问每个tablet服务器的状态来检测一个tablet服务器何时不能继续工作。如果一个tablet服务器报告它失去了它的锁,或者如果master在最近的几次尝试都不能到达一个服务器,则master会尝试获取这个服务器文件的互斥锁。如果master能够获取这个锁,则Chubby运行正常, tablet要么是宕机了,要么就是不能与Chubby正常通信了,因此master通过删除这个tablet服务器的服务器文件来确保这个服务器不能再次进行服务。一旦一个服务器文件被删除,master将之前分配到这个tablet服务器上的所有tablets移动到未被分配的tablets集合里面。为了确保Bigtable集群不易受到master和Chubby之间的网络问题的影响,master将会在它的Chubby会话超时后kill掉自己。然而,如上所说,master失败不会改变tablet服务器上的tablet分布。
当一个master被集群管理系统启动时,它需要在改变tablet分布之前先发现当前的分布。Master在启动时执行下面的步骤。
(1) master从Chubby中抢占一个唯一的master锁,用来阻止其它的master实例化。
(2) master扫描Chubby中的服务器目录,来查找哪些服务器正在运行。
(3) master与每个正常运行的tablet服务器通信,获取每个tablet服务器上tablet的分配信息。
(4) master扫描METADATA表获取所有的tablets的集合。在扫描的过程中,如果遇到一个tablet没有被分配,则将其放入到未被分配的tablets集合中,并可以进行分配。
一种复杂的情况是,在METADATA tablets被分配之前,不能扫描METADATA表。因此在开始扫描之前(第4步),如果在第三步发现root tablet没有分配,则master将root tablet加入到未被分配的tablet集合中。这个附加的操作确保了root tablet将会被分配。因为root tablet包含了所有的METADATA tablets的名字,所以在扫描完root tablet之后,master会得到所有METADATA tablet的名字。
已存在的tablet集合只有在创建或删除表、两个已存在的tablet合并成一个更大的tablet,或者一个已存在的tablet分裂成两个较小的tablet时才会改变。Master会记录所有的这些变化,因为上面几种情况除了最后一个都是它发起的。tablet分裂是比较特殊的,因为它是由tablet服务器发起的。Tablet服务器为METADATA表中记录新tablet的信息提交这次分裂操作。当分裂操作提交后,它会通知master。如果分裂通知丢失(因为tablet服务器或者master宕机),master在询问一个tablet器载入那个分裂的tablet时会检测到新的tablet。
5. Tablet服务
一个tablet的持久状态存储在GFS中,如图5中的描述。更新操作提交到REDO日志中。在这些更新中,最近提交的那些操作存储在一块名为memtable的有序缓存中;较老的更新存放在一系列的SSTable中。为了恢复这个tablet,一个tablet服务器会从METADATA表中读取它的元数据(metadata),这个元数据包含了组成这个tablet的SSTable的列表,以及一系列redo点,这些点指向可能含有该Tablet数据已提交的日志记录。服务器将SSTable的索引读入到内存,并通过执行从redo点开始的所有已提交的更新操作重构memtable。
当一个写操作到达一个tablet服务器时,服务器检查其是否符合语法要求,并验证发送者是否有权限执行这个操作。验证是通过读取一个Chubby文件(这个文件几乎会存在客户端的缓存中)中的可写用户的列表完成的。一个有效的写操作会写入到操作日志中。批处理方式可以提高大量细小操作的吞吐量。在写操作提交后,它的内容被写入到memtable中。
当一个读操作到达一个tablet服务器时,同样会检查是否符合语法要求和本身的权限。一个有效的读操作会在一系列SSTable和memtable合并视图上执行。由于SSTable 和memtable是按字典序排序的数据,所以能够高效的生成合并视图。
当tables进行分裂和合并时,进来的读和写操作能够继续执行。
6.合并压缩
随着写操作的执行,memtable的大小会增加。当memtable的大小达到一个门限值时,这个memtable会被冻结,创建一个新的memtable,并将冻结的memtable转换成一个SSTable写入到GFS中。这里的次压缩(minor compaction)过程有两个目标:减少tablet服务器的内存使用,减少操作日志中在恢复tablet服务器时需要读取的数据总量。当压缩发生时,进来的读和写操作能够继续执行。
每次次压缩(minor compaction)都会创建一个新的SSTable。如果这种行为不停的进行下去,则读操作可能需要合并来自任意数量的SSTable的更新。否则,我们通过在后台周期性的执行合并压缩来限制这些文件的数量。一个合并压缩读取一些SSTable和memtable中的内容,并写入到一个新的SSTable中。输入SSTable和memtable可以在压缩完成后立即丢弃。
一个将所有SSTables写入到一个SSTable中的合并压缩称为主压缩(major compaction)。非主压缩产生的SSTable能够包含特定的删除条目,它阻止在仍然活着的旧SSTable中删除数据。另一方面,主压缩产生的SSTable不会包含删除信息或已删除的数据。Bigtable循环扫描所有的tablets,并定期的对它们执行主压缩。这些主压缩可以回收删除数据所使用的资源,并尽快的确保删除的数据在系统内彻底消失,对于存储的敏感数据,这是十分重要的.
二、优化
在前面章节所描述的实现需要一些优化来满足我们用户的高性能、高可用和高可靠性需求。这一章通过对这些实现更加细节的描述来强调这些优化。 局域性群组 客户端能将多个列族聚集成一个局域性群组。对Tablet中每个局域性群组都会产生一个单独的SSTable。将通常不会被一起访问的列族分隔成不同的局域性群组能够提高读取效率。例如,Webtable中的页面元数据(如语言和校验和)作为一个局域性群组,而页面的内容作为另外一个局域性群组:一个想要读取元数据的应用不需要读取所有的页面内容。 此外,可以针对于每个局域性群组设定一些有用的调整参数。例如,一个局域性群组可以声明为存储在内存中。Tablet服务器采用惰性加载的策略对设定为内存中存储的局域性群组的SSTable进行内存加载。一旦加载过,则属于这些局域性群组的列族能够直接被读取,而不需要访问硬盘。这个功能对一些经常访问的小片数据很有用:在内部,我们使用它存放METADATA表中的位置信息列族。 压缩 客户端能够控制作为局域性群组的SSTable是否被压缩,如果压缩,选定什么样的压缩格式。每个SSTable块(它的大小能够通过局域性群组特定的调整参数来控制)都会按着用户指定的格式进行压缩。尽管由于对每个块分开压缩而浪费了一些空间,但是我们能够受益于在不需要解压整个文件的情况下能够访问部分SSTable。许多客户端使用两遍定制的压缩方式。第一遍使用了Bentley和Mcllroy方式,它通过在一个很大的窗口中对常见的长字符串进行压缩;第二遍使用了一种快速压缩算法,它在16KB大小的窗口内查找重复的数据。两种压缩都很快,在当前的机器上,它们压缩速度为100MB-200MB/s,解压速度为400-1000MB/s。 虽然在选择压缩算法时我们更看重速度而不是减少的空间,但是这种两遍的压缩方式对空间上的压缩也出奇的好。例如,在Webtable中,我们使用了这种压缩方式存储web页面内容。在一个实验中,我们在一个局域性群组中存储大量的文档。针对这个实验的目的,我们没有存储文档的所有版本,而是只存了一份,这种方式实现了10:1的空间压缩率。这比对HTML页面的压缩率为3:1或4:1的常用的Gzip压缩更好,原因在于Webtable存放行的方式:一个域名下的所有页面会存储在临近的地方。这使Bentley-Mcllroy算法能够将相同域名下的大量页面的共同部分识别出来。很多应用,不只是Webtable,选择他们行名以至于所有相似的数据聚集到一起,因此实现了很好的压缩率。当我们在Bigtable中存储相同值的多个版本时,压缩率会更好。 读操作的缓存 为了读操作的性能,tablet服务器使用双层缓存。扫描缓存是高层缓存,它缓存了tablet服务器代码使用SSTable接口获取的key-value对;块缓存是底层缓存,它缓存了从GFS上读取的SSTables块。扫描缓存主要用于倾向重复访问相同数据的应用。块缓存主要用于倾向读取近期数据附近数据的应用(如:顺序读取或随机读取同一个局域性群组的一个频繁访问行的不同列)。 Bloom过滤器 如5.3中描述的,一个读操作必须从所有的组成tablet的SSTable中读取数据。如果这些SSTable没有在内存中,则我们最终会多次访问硬盘。我们通过允许客户端对特定局域性群组的SSTable指定Bloom过滤器来降低访问次数。一个Bloom过滤器允许我们查询一个SSTable是否含有特定的行/列对的数据。对于某些特定应用,虽然存储Bloom过滤器占用了tablet服务器少量的内存,但能够彻底的减少读操作对磁盘的查询次数。我们使用Bloom过滤器也可以隐式的达到了当查询的行和列不存在时,不需要访问磁盘。 操作日志实现 如果我们为每个tablet保存一份单独的日志,那么我将会在GFS中并发的写大量的文件。取决于每个GFS服务器的底层系统实现,这些写操作会引起大量的磁盘查找,用来将数据写入到不同的物理日志文件中。此外,由于批操作通常较小,每个tablet分开保存日志文件会影响批操作所带来的优化。针对这些问题,对于每个tablet服务器我们将修改追加到一份操作日志中,不同的tablet修改混合存储在一个物理日志文件中。 在进行一般的操作时,使用一个日志可以提供很好的性能,但是会使恢复复杂化。当一个tablet服务器宕机,其上的tablets会被移动到大量其它的tablet服务器上:每个tablet服务器通常只负载原始tablet服务器上的一小部分tablets。为了恢复一个tablet的状态,新的tablet服务器需要重新执行原始tablet服务器上操作日志中针对这个tablet的修改。然而,这些tablets的修改混合存在同一个物理日志文件中。一种方式是每个新tablet的服务器会读取整个操作日志文件,然后只执行对于需要恢复的tablet的修改。然而,在这种方式下,如果100台机器每个都从失败的tablet服务器上分配了一个tablet,那么日志文件将被读取100次。 我们通过对日志文件条目以key
进行排序,来避免这种重复的文件读取。在排序输出中,对于一个指定的tablet的所有修改将会是连续的,并因此能够通过一次硬盘查询和顺序读取进行高效的操作。为了并行排序,我们先将日志文件分成64MB大小的片段,在不同的tablet服务器上对每个片段并行的进行排序。这个排序过程由master协同处理,并在当一个tablet服务器声明它需要从一些操作日志中恢复修改时启动。 向GFS中写日志文件有时会由于各种原因引起性能波动(如:写操作进行时,一个GFS服务器宕机了,或者连接三个GFS副本服务器所在的网络发生拥塞或过载)。为了确保在GFS高负载时修改能够正常进行,每个tablet服务器实际有两个写日志线程,每个线程写自己的日志文件,同一时刻,两个线程中只有一个是工作的。如果一个写日志的线程效率很差,则会切换到另一个线程,修改操作的日志就会写在这个线程下的日志文件中。每个日志记录都有一个序列号,以此使tablet服务器在恢复时忽略掉线程切换所产生的重复的条目。 Tablet恢复提速 如果master将一个tablet从一个tablet服务器移动到另一个服务器,源tablet服务器会在本地先进行一个次压缩。这个压缩通过减少了tablet服务器日志中没有归并的记录的数量来缩短恢复时间。压缩完成后,tablet服务器停止对该tablet的服务。在卸载tablet之前,源服务器还会再做一次次压缩(通常很快),以消除第一次次压缩过程中新进入的未归并到SSTable中的修改。在这次次压缩完成后,tablet能够被载入到另一个tablet服务器上,而无需通过任何的日志条目恢复。 利用不变性 除了SSTable缓存,实际中我们产生的其它部分的SSTable都是不变的,我们可以通过这个事实来简化Bigtable系统。例如,当从SSTable读取数据时,我们不需要对文件系统访问操作进行任何同步。这样,就可以非常高效的实现对行的并行操作。Memtable是唯一一个能被读和写操作同时访问的可变数据结构。为了减少在读操作时的竞争,我们对内存采用了copy-on-write机制,这样就允许读写操作同时进行了。 因为SSTable是不可修改的,所以我们将永久移除要删除的数据问题转换为对废弃的SSTable进行垃圾回收的问题。Tablet的每个SSTable都在METADATA表中注册过。Master通过标记-删除的方式移除SSTable集合中废弃的SSTable,METADATA表中包含了ROOT集合。 最后,SSTable的不可变性使我们能够快速的分裂tablet。我们让子tablet(分裂后的tablet)共享父tablet(分裂前的tablet)的SSTables,而不是为每个子tablet创建新的SSTable集合。
你可能感兴趣的:(Bigtable)
HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
Hbase、hive以及ClickHouse的介绍和区别?
damokelisijian866
hbase hive clickhouse
一、Hbase介绍:HBase是一个分布式的、面向列的开源数据库,由ApacheSoftwareFoundation开发,是Hadoop生态系统中的一个重要组件。HBase的设计灵感来源于Google的Bigtable论文,它通过提供类似于Bigtable的能力,在Hadoop之上构建了一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase主要用于存储大量结构化数据,并支持随机读写访问,
Hive和Hbase的区别
傲雪凌霜,松柏长青
大数据 后端 hive hbase hadoop
Hive和HBase都是Hadoop生态系统中的重要组件,它们都能处理大规模数据,但各自有不同的适用场景和设计理念。以下是两者的主要区别:1.数据模型Hive:Hive类似于传统的关系型数据库(RDBMS),以表格形式存储数据。它使用SQL-like语言HiveQL来查询和处理数据,数据通常是结构化或半结构化的。HBase:HBase是一个NoSQL数据库,基于Google的BigTable模型。
HBase
傲雪凌霜,松柏长青
大数据 后端 hbase 数据库 大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
Hadoop组件
静听山水
Hadoop hadoop
这张图片展示了Hadoop生态系统的一些主要组件。Hadoop是一个开源的大数据处理框架,由Apache基金会维护。以下是每个组件的简短介绍:HBase:一个分布式、面向列的NoSQL数据库,基于GoogleBigTable的设计理念构建。HBase提供了实时读写访问大量结构化和半结构化数据的能力,非常适合大规模数据存储。Pig:一种高级数据流语言和执行引擎,用于编写MapReduce任务。Pig
with recursive as实现递归
林-双喜
数据库 sql
withaswithas相信大家都会用,用于创建临时表达式CTE(我理解为临时表),方便在后续代码中引用它,是的代码看起来更加简洁,且逻辑更清晰。withtmp1as(select*fromtable1...),tmp2as(select*fromtmp1...)INSERTOVERWRITETABLEbigtableselect*fromtmp1unionallselect*fromtmp2wi
HBase——基础概念介绍
zhanglf1016
# HBase hbase 数据库 大数据
一、初识HBaseHBase是一个面向列式存储的分布式数据库,其设计思想来源于Google的BigTable论文。HBase底层存储基于HDFS实现,集群的管理基于ZooKeeper实现。HBase良好的分布式架构设计为海量数据的快速存储、随机访问提供了可能,基于数据副本机制和分区机制可以轻松实现在线扩容、缩容和数据容灾,是大数据领域中Key-Value数据结构存储最常用的数据库方案。HBase特
HBase知识点总结
hbase大数据数据库
一、HBase基础HBase是一种建立在Hadoop文件系统之上的分布式、可扩展、支持海量数据存储的NoSQL数据库。HBase是BigTable的开源Java版本。是建立在HDFS之上,提供高可靠性、高性能、列存储、可伸缩、实时读写NoSql的数据库系统。它介于NoSql和RDBMS之间,仅能通过主键(rowKey)和主键的range来检索数据,仅支持单行事务(可通过Hive支持来实现多表joi
【图文详解】一文全面彻底搞懂HBase、LevelDB、RocksDB等NoSQL背后的存储原理:LSM-tree 日志结构合并树
禅与计算机程序设计艺术
LSM树广泛用于数据存储,例如RocksDB、ApacheAsterixDB、Bigtable、HBase、LevelDB、ApacheAccumulo、SQLite4、Tarantool、WiredTiger、ApacheCassandra、InfluxDB和ScyllaDB等。在这篇文章中,我们将深入探讨LogStructuredMergeTree,又名LSM树:许多高度可扩展的NoSQL分布
bigtable: A Distributed Storage System for Structured Data
weixin_33978044
runtime 数据结构与算法 大数据
bigtable:ADistributedStorageSystemforStructuredDatahttp://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/bigtable-osdi06.pdfhttp://www.dbthink.com/?p=493,
经典论文研读:《Bigtable: A Distributed Storage System for Structured Data》
WanderingScorpion
论文研读 检索技术 论文研读 数据存储 原力计划
一概述BigTable是以大神JeffreyDean为首的Google团队在2006年公开的分布式存储系统,是Google“三驾马车”论文中(GFS、MapReduce、BigTable)中最后公开的。在BigTable论文中,Google构思、设计并实现了一套支持结构化数据存储的超大容量分布式存储系统。BigTable中关于数据模型、底层存储技术和架构模型的设计思路直到今日仍被奉为经典,下面我们
Bigtable: A Distributed Storage System for Structured Data_中文翻译
冷冽的火花
数据库 数据库 hdfs sql
Bigtable:ADistributedStorageSystemforStructuredData(作为分布式数据库的经典文献,个人在学习的过程中参考其它译文进行翻译:参考译文:https://blog.csdn.net/u010359965/article/details/49795133)摘要Bigtable是一个分布式存储系统,用于管理结构化数据,并被设计成可以扩展到非常大的规模:跨越数
HBase介绍
M.Rambo
hbase 数据库 大数据 分布式 java
一、HBase简介1.1、HBase是什么Google在200-2006发表了GFS、MapReduce、BigTable三篇论文,号称“三驾马车”,开启了大数据的时代。GFS是GoogleFileSystem,开源实现是HDFS(HadoopFileSystem)。MapReduce计算框架的开源实现是HadoopMapReduce。BigTable的开源实现的实现是HBase(HadoopDa
Springboot快速教程---Docker搭建与整合Hbase
爆米花机枪手
JAVA Maven Docker springboot hbase docker
Hbase简介HBase是Hadoop的生态系统,是建立在Hadoop文件系统(HDFS)之上的分布式、面向列的数据库,通过利用Hadoop的文件系统提供容错能力。如果你需要进行实时读写或者随机访问大规模的数据集的时候,请考虑使用HBase!HBase作为GoogleBigtable的开源实现,GoogleBigtable利用GFS作为其文件存储系统类似,则HBase利用HadoopHDFS作为其
读论文Google-MapReduce
.金木研.
论文阅读
江湖永流传:谷歌技术有“三宝”,GFS,MapReduce和大表(BigTable)!作为一名大数据兼计算机外行人,读完了Google-MapReduce这篇论文后萌生了一点小感悟(实则拙见)。这其中包括我参考了一些大佬们的形象讲解渐渐顿悟的自我感受和所读论文的大体内容。论文大体内容什么是MapReduceMapReduce是一个编程模型,也是一个处理和生成超大数据集的算法模型的相关实现。用户首先
Hive之set参数大全-20
OnePandas
Hive hive 数据仓库
指定在执行大表半连接操作时的最小表大小,以决定是否启用半连接操作的优化在Hive中,hive.tez.bigtable.minsize.semijoin.reduction是一个配置参数,用于指定在执行大表半连接操作时的最小表大小,以决定是否启用半连接操作的优化。以下是有关该参数的一些解释:用途:该参数用于半连接操作的优化。半连接是一种连接操作,其中一个表较小,而另一个表较大。当大表的大小超过一定
HBase基础知识与架构概述
OpenChat
hbase 架构 数据库 大数据 分布式
1.背景介绍HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable论文设计,并作为Hadoop生态系统的一部分。HBase提供了高可靠性、高性能的数据存储和查询能力,适用于大规模数据处理和实时数据访问场景。HBase的核心特点包括:分布式:HBase可以在多个节点上分布式部署,实现数据的水平扩展。可扩展:HBase支持动态添加和删除节点,以应对业务增长和变化。高性
架构:HBase的核心组件和架构设计
OpenChat
架构 hbase 数据库 大数据 分布式
1.背景介绍在大数据时代,数据的存储和处理已经成为了企业和组织中非常重要的一环。HBase作为一种高性能、可扩展的列式存储系统,已经成为了许多企业和组织的首选。在本文中,我们将深入了解HBase的核心组件和架构设计,为读者提供一个全面的了解。1.背景介绍HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable论文设计。HBase可以存储海量数据,并提供快速的随机读写
深入浅出hdfs-hadoop基本介绍
大数据之家
hdfs hadoop 大数据
一、Hadoop基本介绍hadoop最开始是起源于ApacheNutch项目,这个是由DougCutting开发的开源网络搜索引擎,这个项目刚开始的目标是为了更好的做搜索引擎,后来Google发表了三篇未来持续影响大数据领域的三架马车论文:GoogleFileSystem、BigTable、Mapreduce开始掀起来了大数据的浪潮,paper原文可以参考我的这篇文章CSDN。这三篇论文介绍了如何
hbase 总结
l靠近一点点l
大数据 hbase
HBase什么是HBasehbase是一个基于java、开源、NoSql、非关系型、面向列的、构建与hadoop分布式文件系统(HDFS)上的、仿照谷歌的BigTable的论文开发的分布式数据库。简介:列式存储数据库列式存储数据库以列为单位聚合数据,然后将列值顺序地存入磁盘,这种存储方法不同于行式存储的传统数据库,行式存储数据库连续地存储整行。图1-1形象地展示了列式存储和行式存储的不同物理结构。
Hbase原理、基本概念、基本架构
wyl9527
Hbase hbase 存储系统
概述HBase是一个构建在HDFS上的分布式列存储系统;HBase是基于GoogleBigTable模型开发的,典型的key/value系统;HBase是ApacheHadoop生态系统中的重要一员,主要用于海量结构化数据存储;从逻辑上讲,HBase将数据按照表、行和列进行存储。与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。Hbase表的特
HBase介绍及简易安装(转)
weixin_33711647
大数据 数据库 人工智能
HBase介绍及简易安装(转)HBase简介HBase是ApacheHadoop的数据库,能够对大型数据提供随机、实时的读写访问,是Google的BigTable的开源实现。HBase的目标是存储并处理大型的数据,更具体地说仅用普通的硬件配置,能够处理成千上万的行和列所组成的大型数据库。HBase是一个开源的、分布式的、多版本的、面向列的存储模型。可以直接使用本地文件系统也可使用Hadoop的HD
Hadoop集群(第12期)_HBase简介及安装
weixin_30451709
大数据 数据库 人工智能
HBase简介HBase是ApacheHadoop的数据库,能够对大型数据提供随机、实时的读写访问,是Google的BigTable的开源实现。HBase的目标是存储并处理大型的数据,更具体地说仅用普通的硬件配置,能够处理成千上万的行和列所组成的大型数据库。HBase是一个开源的、分布式的、多版本的、面向列的存储模型。可以直接使用本地文件系统也可使用Hadoop的HDFS文件存储系统。为了提高数据
HBase学习
mm_bit
HBase 大数据 数据库
HBase简介HBase是ApacheHadoop的数据库,能够对大型数据提供随机、实时的读写访问,是Google的BigTable的开源实现。HBase的目标是存储并处理大型的数据,更具体地说仅用普通的硬件配置,能够处理成千上万的行和列所组成的大型数据库。HBase是一个开源的、分布式的、多版本的、面向列的存储模型。可以直接使用本地文件系统也可使用Hadoop的HDFS文件存储系统。为了提高数据
HBase简易安装和简介
滑过的板砖
Hbase
HBase简介HBase是ApacheHadoop的数据库,能够对大型数据提供随机、实时的读写访问,是Google的BigTable的开源实现。HBase的目标是存储并处理大型的数据,更具体地说仅用普通的硬件配置,能够处理成千上万的行和列所组成的大型数据库。HBase是一个开源的、分布式的、多版本的、面向列的存储模型。可以直接使用本地文件系统也可使用Hadoop的HDFS文件存储系统。为了提高数据
Hbase 基础理论
Allocator
Hbase hbase
HBase基础理论Hbase数据模型表列族列限定符时间戳表概念视图表物理视图列存储与行存储模式的区别Hbase实现原理Master与RegionRegion服务器工作原理HBase基础理论Hbase是一个分布式的列数据库,适用于分布式大数据场景。Hbase本身是属于NoSQL在hadoop的大数据集群框架中可以用来做数据的存储。Hbase本身是Google的Bigtable理论的开源实现。本篇文章
Hbas简介:数据模型和概念、物理视图
缘友一世
分布式数据库Hbase探究 hbase 分布式 数据库
文章目录说明零BigTable一Hbase简介二HBase访问接口简介三行式&列式存储四HBase数据模型4.1HBase列族数据模型4.2数据模型的相关概念4.3数据坐标五概念&物理视图说明本文参考自林子雨老师的大数据技术原理与应用(第三版)教材内容,仅供学习和交流零BigTableGoogleBigtable是一种高度可扩展的分布式数据库,旨在处理海量数据并提供高吞吐量和低延迟的访问。它是谷歌
Hbase笔记
MFRain
HBase-1.hbase介绍ApacheHBase™是Hadoop数据库,是一个分布式,可扩展的大数据存储。当您需要对大数据进行随机,实时读/写访问时,请使用ApacheHBase™。该项目的目标是托管非常大的表-数十亿行X百万列-在商品硬件集群上。ApacheHBase是一个开源的,分布式的,版本化的非关系数据库,模仿Google的Bigtable:Chang等人的结构化数据分布式存储系统。正
HBASE学习一:原理架构详解
Studying!!!
中间件 hbase 学习 架构
1、架构原理1.1、基本概念HBase是一款面向列存储,用于存储处理海量数据的NoSQL数据库。它的理论原型是Google的BigTable论文。你可以认为HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase的存储是基于HDFS的,HDFS有着高容错性的特点,被设计用来部署在低廉的硬件上,基于Hadoop意味着HBase与生俱来的超强的扩展性和吞吐量。HBase采用的时ke
大数据开发之Hive(企业级调优)
Key-Key
大数据 hive hadoop
第10章:企业级调优创建测试用例1、建大表、小表和JOIN后表的语句//创建大表createtablebigtable(idbigint,tbigint,uidstring,keywordstring,url_rankint,click_numint,click_urlstring)rowformatdelimitedfieldsterminatedby'\t';//创建小表createtable
安装数据库首次应用
Array_06
java oracle sql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
IllegalStateException: Cannot forward a response that is already committed
Cwind
java Servlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oracle sql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
Python调试
矮蛋蛋
python pdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
spring aop实例annotation方法实现
bijian1013
java spring AOP annotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
[Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
Netty源码学习-ReadTimeoutHandler
bylijinnan
java netty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
jquery验证上传文件样式及大小(好用)
cngolon
文件上传 jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
浏览器兼容【转】
cuishikuan
css 浏览器 IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell $# $? 特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
Java 打开浏览器
hw1287789687
打开网址 open浏览器 open browser 打开url 打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chrome Google google api chrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
java DAO 设计模式 AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {