- 分布式微服务系统架构第91集:系统性能指标总结
掘金-我是哪吒
分布式微服务系统架构架构云原生
加群联系作者vx:xiaoda0423仓库地址:https://webvueblog.github.io/JavaPlusDoc/系统性能指标总结系统性能指标包括哪些?业务指标、资源指标、中间件指标、数据库指标、前端指标、稳定性指标、批量处理指标、可扩展性指标、可靠性指标。1)业务指标:主要包括并发用户数、响应时间、处理能力。响应时间ResponseTime:RT对于在线实时交易:互联网企业:50
- 机器学习day8
ኈ ቼ ዽ
机器学习numpypython
自定义数据集,使用朴素贝叶斯对其进行分类代码importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[2.1,2.2],[2.4,2.5],[2.2,2.0],[2.0,2.1],[2.3,2.3],[2.6,2.4],[2.5,2.1]])class2_points=np.array([[4.0,3.5],[4.2,3
- 机器学习day5
ኈ ቼ ዽ
机器学习人工智能
自定义数据集使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测代码importtensorflowastfimportnumpyasnp#1.自定义数据集data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0.4,3
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
sirius12345123
分类numpypython
importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.7,3.3
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
知识鱼丸
machinelearning机器学习
自定义数据集:继承torch.utils.data.Dataset类创建自定义数据集,并重写__len__和__getitem__方法。定义逻辑回归模型:继承nn.Module类,定义一个线性层,并在forward方法中应用sigmoid激活函数。训练模型:使用二元交叉熵损失函数BCELoss和随机梯度下降优化器SGD进行训练。保存模型:使用torch.save保存模型的参数。加载模型并预测:加载
- JVM执行引擎
糖JL是我儿
JVMjvm
一、执行引擎的概述:执行引擎是]ava虚拟机核心的组成部分之一;“虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、缓存、指令集和操作系统层面上的,而虚拟机的执行引擎则是由软件自行实现的,因此可以不受物理条件制约地定制指令集与执行引擎的结构体系,能够执行那些不被硬件直接支持的指令集格式JVM的主要任务是负责装载字节码到其内部,但字节码并不
- 再添认可!KaiwuDB 储能行业解决方案入选国家级案例集题
KaiwuDB 数据库
KaiwuDB热点新闻kaiwudb分布式多模数据库数字能源应用分布式储能
导读近日,2024信息技术应用发展大会暨解决方案应用推广大会在天津举行。会上,工业和信息化网络安全发展中心(以下简称“信息中心”)通报了2023年信息技术应用典型解决方案入围获奖名单,并正式发布《2023信息技术应用典型解决方案案例集》。“基于KaiwuDB的分布式储能行业解决方案”分别通过了资格初审、专家中评、区域评议、专家答辩终评、综合复议等环节,最终从全国各省厅、局提报的1073项优秀案例中
- TensorFlow 示例项目实战与源码解析.zip
ELSON麦香包
本文还有配套的精品资源,点击获取简介:TensorFlow是谷歌大脑团队开发的开源机器学习库,广泛应用于深度学习、人工智能等领域。该压缩包提供了一个TensorFlow示例项目的源代码,涵盖了从基础操作到复杂模型的各种主题。文章将详细介绍TensorFlow的核心概念,如张量、图计算、会话、变量、梯度下降与优化器、损失函数、数据集、模型评估、模型保存与恢复以及KerasAPI。读者可通过实践这些示
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
知识鱼丸
machinelearning人工智能
数据集生成:-使用make_classification函数生成包含1000个样本的数据集,设置20个特征,其中10个是有信息的特征,类别数为2,通过设置random_state=42保证每次运行生成的数据相同。数据划分:-使用train_test_split函数将生成的数据集划分为训练集和测试集,测试集占比为20%,同样通过random_state=42保证划分的一致性。SVM模型:-初始化SV
- 电子信息工程专业学习过程中资料分享
莲月唯翼
学习电子信息工程单片机51单片机
①:一周搞定系列之模电链接:https://pan.baidu.com/s/1FGQvXCTbYqGVnsqL7Zb_nw?pwd=8888提取码:8888②:51单片机郭天祥十天学会单片机教学视频链接:https://pan.baidu.com/s/1tym6M-I8LFZa5rtdtH94hA?pwd=8888提取码:8888③:石油大学-《模拟电路》和《数字电路》视频教程各31集链接:htt
- 2021年PHP-Laravel面试题问卷题 答案记录
leonsxd
面试php开发开发工具phplaravel开发语言
1.PHP的哪些语言特征,在合适的场景可以显著减少程序的内存开销?GeneratorTraitTypehintSPL解析:Generator生成器具体详解可以参考:https://blog.51cto.com/chinalx1/2089327如果不考虑用Generator来实现协程,那么Generator的一个最大的作用就是为含有大量数据的集合(当前这些数据集是规则的,就像range所返回的那些数
- 什么是事件驱动(EDA)
锦还之路
服务架构大数据
什么是事件驱动事件驱动架构(Event-DrivenArchitecture,EDA)是一种基于事件的软件架构模式,它通过异步、松耦合的方式实现系统中各个组件之间的消息传递,从而支持高可扩展性、高可用性、高性能和灵活性。在事件驱动架构中,所有的信息都以事件的形式进行表达和处理。一个事件是一个抽象的、有意义的数据集,这些数据集可以被其他的服务接收、解码并做出对应的响应。事件可以由客户端、服务端或第三
- scikit-learn实现SVM
PeterClerk
支持向量机scikit-learn算法
支持向量机(SVM)是一种监督学习算法,主要用于分类和回归分析。其基本原理是在数据集中找到一个最优的超平面,使得不同类别的数据被最大间隔分开。最大间隔超平面:SVM的目标是找到能够最大化训练样本间隔的超平面。间隔被定义为到最近训练样本点的距离,这些点被称为支持向量。这种策略的优势在于它提供了一种防止模型过拟合的方法,从而提高了泛化能力。核技巧:在实际应用中,许多数据集不是线性可分的,这就需要使用核
- 自定义数据集 使用scikit-learn中SVM的包实现SVM分类
Luzem0319
scikit-learn支持向量机分类
生成自定义数据集生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。importnumpyasnpimportmatplotlib.pyplotasplt#生成数据np.random.seed(42)X=np.r_[np.random.randn(100,2)-[2,2],np.random.randn(100,2)+[2,2]]y=[0]*100+[1]*100#可视化数据plt.s
- StarRocks从入门到精通系列二:手动部署StarRocks
快乐骑行^_^
大数据StarRocks从入门到精通系列手动部署StarRocks
StarRocks从入门到精通系列二:手动部署StarRocks一、前提条件二、部署FE节点三、部署BE节点以下示例仅部署一台FE节点以及一台BE节点。在正常应用环境中,一个StarRocks集群需要部署三个BE节点。一、前提条件在部署StarRocks之前,请确保如下环境要求已满足。分类描述说明硬件要求集群至少拥有两台物理或虚拟节点。BE节点CPU需支持AVX2指令集。各节点间需要通过万兆网卡及
- iOS 进阶必读 - 收藏集 - 掘金
weixin_33743880
移动开发runtimexcode
深入研究Block捕获外部变量和__block实现原理-掘金前言Blocks是C语言的扩充功能,而Apple在OSXSnowLeopard和iOS4中引入了这个新功能“Blocks”。从那开始,Block就出现在iOS和Mac系统各个API中,并被大家广泛使用。一句话来形容Blocks,带有自动变量(局...神经病院Objective-CRuntime住院第二天—消息发送与转发-掘金前言现在越来越
- 数据分析案例-基于服饰行业中消费者行为和购物习惯的可视化分析
艾派森
数据可视化数据分析python数据分析信息可视化数据挖掘
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 第五篇: 使用Python和BigQuery进行电商数据分析与可视化
山海青风
GoogleCloud大数据数据分析python大数据googlecloud
使用Python和BigQuery进行电商数据分析与可视化大数据分析对于电商业务的洞察至关重要。在这篇文章中,我们将使用Python结合GoogleBigQuery来分析电商数据集,以最畅销商品和平均订单价格最高的前10位客户为主题,展示如何通过数据可视化提供有价值的业务见解。我们将重点介绍数据提取和可视化,帮助读者掌握在实际场景中如何直观展示数据分析结果。1.数据集与分析目标本文使用Google
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
sirius12345123
scikit-learn均值算法
importmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansimportnumpyasnpclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[-1.9,1
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
sirius12345123
scikit-learn支持向量机分类
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvm#定义数据class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.
- 使用scikit-learn中的K均值包进行聚类分析
Luzem0319
机器学习人工智能
聚类是无监督学习中的一种重要技术,用于在没有标签信息的情况下对数据进行分析和组织。K均值算法是聚类中最常用的方法之一,其目标是将数据点划分为K个簇,使得每个簇内的数据点更加相似,而不同簇之间的数据点差异较大。准备自定义数据集首先,需要一个自定义数据集来进行聚类分析。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#创建自定义数据
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
知识鱼丸
machinelearning机器学习
数据集定义:-data列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。特征提取:-使用CountVectorizer将文本转换为词频向量。fit_transform方法在训练数据上拟合向量器并进行转换。模型训练:-初始化MultinomialNB模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。-使用fit方法在提取的特征和标签上训练模型。预测:-
- 机器学习在网络安全领域的深度探索与实践
noVonN
机器学习web安全人工智能
一、引言在信息化社会的今天,网络安全已经成为国家、企业和个人关注的核心议题。随着网络空间中数据量爆炸性增长以及攻击手段日新月异的变化,传统的基于规则和签名的防护方法已经无法有效应对日益复杂的威胁态势。机器学习作为人工智能的重要分支,凭借其自动从大量数据中发现规律、预测未来行为以及识别异常的能力,在网络安全领域展现出了巨大的应用潜力与价值。机器学习技术通过模拟人类的学习过程,能够从历史数据中自适应地
- 使用numpy自定义数据集,使用scikit-learn中SVM的包实现SVM分类
辞落山
numpyscikit-learn支持向量机
概述:支持向量机(SVM)是一种强大的分类算法,适用于线性和非线性分类问题。本博客将展示如何使用numpy自定义一个数据集,并利用scikit-learn中的SVM实现分类。1.导入必要的库importnumpyasnpfromsklearn.svmimportSVCfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metri
- 使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
辞落山
pytorch逻辑回归人工智能
1.导入必要的库首先,导入我们需要的库:Numpy、Pytorch和相关工具包。importnumpyasnpimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.metricsimportaccuracy_score,recall_score,f1_score2.自定义数据集使用Numpy创建一个简单的线性可分数据集,并
- 【机器学习】自定义数据集,使用scikit-learn 中K均值包 进行聚类
加德霍克
机器学习scikit-learn均值算法python作业
一、K均值算法简介K均值算法的目标是将数据集划分为K个簇,使得每个数据点属于离它最近的簇中心(centroid)所代表的簇。K均值聚类算法步骤①初始化:随机选择原始数据的K个数据点作为初始质心(聚类中心)。②分配:将每个数据点划分到距离最近的质心所对应的簇中,即计算每个数据点到每个质心的距离,选择距离最近的质心作为该数据点所属的簇。③更新:重新计算每个簇的质心,即将该簇中所有数据点的坐标取平均值,
- 在CentOS服务器上部署DeepSeek R1
蓝染k9z
deepseek服务器centoslinux人工智能deepseek
在CentOS服务器上部署DeepSeekR1,并通过公网IP与其进行对话,可以按照以下步骤操作:一、环境准备系统要求:CentOS8+(需支持AVX512指令集)。硬件配置:GPU版本:NVIDIA驱动520+,CUDA11.8+。CPU版本:至少16核处理器,64GB内存。存储空间:原始模型需要30GB,量化后约8-20GB。安装基础工具:更新系统并安装必要的编译工具:一定要买GPU服务器。s
- Selenium安装及配置和Python/Java案例
fuqying
pythonseleniumjava
什么是Selenium?Selenium起源2004年,是一个开源、免费、简单、灵活,对Web浏览器支持良好的自动化测试工具,在UI自动化、爬虫等场景下是十分实用的。Selenium的用途*Selenium*有很多功能,但其核心是Web浏览器自动化的一个工具集,它使用最好的技术来远程控制浏览器实例,并模拟用户与浏览器的交互。它允许用户模拟终端用户执行的常见活动;将文本输入到字段中,选择下拉值和复选
- 【数据库系列】Liquibase 与 Flyway 的详细对比
颜淡慕潇
数据库系列mysqlspring数据库后端springboot
在现代软件开发中,数据库版本控制是一个至关重要的环节。为了解决数据库迁移和变更管理的问题,开发者们通常会使用工具,如Liquibase和Flyway。本文将对这两个流行的数据库迁移工具进行详细比较,从基础概念、原理、优缺点到使用场景和示例,帮助开发者选择适合自身项目的工具。1.基础介绍1.1LiquibaseLiquibase是一个开源的数据库版本控制工具,允许开发人员通过定义变更集(Change
- 自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
辞落山
逻辑回归
1.引言在这篇博客中,我们将使用PaddlePaddle框架实现一个逻辑回归模型,利用NumPy自定义数据集进行训练,并保存模型。最后,我们将演示如何加载保存的模型并进行预测。2.环境设置首先,确保已安装PaddlePaddle和NumPy:pipinstallpaddlepaddlenumpy3.数据集准备我们使用NumPy自定义一个简单的二分类数据集:importnumpyasnp#生成简单数
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&