Java多线程(二十六)---java中的阻塞队列

移步java多线程系列文章

1 什么是阻塞队列

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。

  • 1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。
  • 2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。

阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

在阻塞队列不可用时,这两个附加操作提供了4种处理方式

qq_pic_merged_1539761781658.jpg

  • 抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException("Queue full")异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。
  • 返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。
  • 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。
  • 超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。

注意 如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永远不会被阻塞,而且使用offer方法时,该方法永远返回true。

2 Java里的阻塞队列

JDK 7提供了7个阻塞队列,如下

  • ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
  • PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

2.1 ArrayBlockingQueue

  • ArrayBlockingQueue是一个用数组实现的有界阻塞队列。
  • 此队列按照先进先出(FIFO)的原则对元素进行排序。
  • 默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。
  • 非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。
  • 为了保证公平性,通常会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列。
  ArrayBlockingQueue fairQueue = new  ArrayBlockingQueue(1000,true);

访问者的公平性是使用可重入锁实现的,代码如下。

public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
}

2.2 LinkedBlockingQueue

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

2.3 PriorityBlockingQueue

  • PriorityBlockingQueue是一个支持优先级的无界阻塞队列。
  • 默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。
  • 默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。

2.4 DelayQueue

  • DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。
  • 队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

DelayQueue非常有用,可以将DelayQueue运用在以下应用场景。

  • 缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
  • 定时任务调度:使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的。

2.4.1 如何实现Delayed接口

DelayQueue队列的元素必须实现Delayed接口。我们可以参考ScheduledThreadPoolExecutor里ScheduledFutureTask类的实现,一共有三步。
第一步:在对象创建的时候,初始化基本数据。使用time记录当前对象延迟到什么时候可以使用,使用sequenceNumber来标识元素在队列中的先后顺序。

  private static final AtomicLong sequencer = new AtomicLong(0);
ScheduledFutureTask(Runnable r, V result, long ns, long period) {
ScheduledFutureTask(Runnable r, V result, long ns, long period) {
            super(r, result);
            this.time = ns;
            this.period = period;
            this.sequenceNumber = sequencer.getAndIncrement();
}

第二步:实现getDelay方法,该方法返回当前元素还需要延时多长时间,单位是纳秒

  public long getDelay(TimeUnit unit) {
            return unit.convert(time - now(), TimeUnit.NANOSECONDS);
        }

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为实现getDelay()方法时可以指定任意单位,一旦以秒或分作为单位,而延时时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

第三步:实现compareTo方法来指定元素的顺序。
例如,让延时时间最长的放在队列的末尾。

  public int compareTo(Delayed other) {
            if (other == this)  // compare zero ONLY if same object
                return 0;
            if (other instanceof ScheduledFutureTask) {
                ScheduledFutureTask<> x = (ScheduledFutureTask<>)other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
                else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long d = (getDelay(TimeUnit.NANOSECONDS) -
                        other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0)  0 : ((d < 0)  -1 : 1);
        }

2.4.2 如何实现延时阻塞队列

延时阻塞队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay <= 0)
    return q.poll();
else if (leader != null)
        available.await();
else {
    Thread thisThread = Thread.currentThread();
leader = thisThread;
        try {
                available.awaitNanos(delay);
            } finally {
                if (leader == thisThread)
                leader = null;
            }
    }

代码中的变量leader是一个等待获取队列头部元素的线程。如果leader不等于空,表示已经有线程在等待获取队列的头元素。所以,使用await()方法让当前线程等待信号。如果leader等于空,则把当前线程设置成leader,并使用awaitNanos()方法让当前线程等待接收信号或等待delay时间。

2.5 SynchronousQueue

  • SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。
  • 它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。
  • 使用以下构造方法可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的顺序访问队列。
  public SynchronousQueue(boolean fair) {
        transferer = fair  new TransferQueue() : new TransferStack();
    }

SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于LinkedBlockingQueue和ArrayBlockingQueue。

2.6 LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。
相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

2.6.1 transfer方法

  • 如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。
  • 如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。

transfer方法的关键代码如下。

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);
  • 第一行代码是试图把存放当前元素的s节点作为tail节点。
  • 第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。

2.6.2 tryTransfer方法

  • tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。
  • 如果没有消费者等待接收元素,则返回false。
  • 和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回,而transfer方法是必须等到
    消费者消费了才返回。
  • 对于带有时间限制的tryTransfer(E e,long timeout,TimeUnit unit)方法,试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。

2.7 LinkedBlockingDeque

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以从队列的两端插入和移出元素。双向队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以First单词结尾的方法,表示插入、获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。另外,插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是JDK的bug,使用时还是用带有First和Last后缀的方法更清楚。 在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以运用在“工作窃取”模式中。

3 阻塞队列的实现原理

  • 如果队列是空的,消费者会一直等待,当生产者添加元素时,消费者是如何知道当前队列有元素的呢?如果让你来设计阻塞队列你会如何设计,如何让生产者和消费者进行高效率的通信呢?
  • 让我们先来看看JDK是如何实现的。 使用通知模式实现。所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。

通过查看JDK源码发现ArrayBlockingQueue使用了Condition来实现,代码如下。

private final Condition notFull;
private final Condition notEmpty;
public ArrayBlockingQueue(int capacity, boolean fair) {
        // 省略其他代码
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }
public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            insert(e);
        } finally {
            lock.unlock();
        }
}
public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0)
                notEmpty.await();
            return extract();
        } finally {
            lock.unlock();
        }
}
private void insert(E x) {
        items[putIndex] = x;
        putIndex = inc(putIndex);
        ++count;
        notEmpty.signal();
    }


当往队列里插入一个元素时,如果队列不可用,那么阻塞生产者主要通过LockSupport.park(this)来实现。

public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }


继续进入源码,发现调用setBlocker先保存一下将要阻塞的线程,然后调用unsafe.park阻塞当前线程。

public static void park(Object blocker) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        unsafe.park(false, 0L);
        setBlocker(t, null);
    }

unsafe.park是个native方法,代码如下。

public native void park(boolean isAbsolute, long time);

park这个方法会阻塞当前线程,只有以下4种情况中的一种发生时,该方法才会返回。

  • 与park对应的unpark执行或已经执行时。“已经执行”是指unpark先执行,然后再执行park的情况。
  • 线程被中断时。
  • 等待完time参数指定的毫秒数时。
  • 异常现象发生时,这个异常现象没有任何原因。

继续看一下JVM是如何实现park方法:park在不同的操作系统中使用不同的方式实现,在Linux下使用的是系统方法pthread_cond_wait实现。
现代码在JVM源码路径src/os/linux/vm/os_linux.cpp里的os::PlatformEvent::park方法,代码如下。

void os::PlatformEvent::park() {
    int v ;
            for (;;) {
                v = _Event ;
            if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
            }
            guarantee (v >= 0, "invariant") ;
            if (v == 0) {
            // Do this the hard way by blocking ...
            int status = pthread_mutex_lock(_mutex);
            assert_status(status == 0, status, "mutex_lock");
            guarantee (_nParked == 0, "invariant") ;
            ++ _nParked ;
            while (_Event < 0) {
            status = pthread_cond_wait(_cond, _mutex);
            // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
            // Treat this the same as if the wait was interrupted
            if (status == ETIME) { status = EINTR; }
            assert_status(status == 0 || status == EINTR, status, "cond_wait");
            }
            -- _nParked ;
            // In theory we could move the ST of 0 into _Event past the unlock(),
            // but then we'd need a MEMBAR after the ST.
            _Event = 0 ;
            status = pthread_mutex_unlock(_mutex);
            assert_status(status == 0, status, "mutex_unlock");
            }
            guarantee (_Event >= 0, "invariant") ;
            }
    }


pthread_cond_wait是一个多线程的条件变量函数,cond是condition的缩写,字面意思可以理解为线程在等待一个条件发生,这个条件是一个全局变量。

这个方法接收两个参数:一个共享变量_cond,一个互斥量_mutex。而unpark方法在Linux下是使用pthread_cond_signal实现的。
park方法在Windows下则是使用WaitForSingleObject实现的。想知道pthread_cond_wait是如何实现的,可以参考glibc-2.5的nptl/sysdeps/pthread/pthread_cond_wait.c。
当线程被阻塞队列阻塞时,线程会进入WAITING(parking)状态。我们可以使用jstack dump阻塞的生产者线程看到这点,如下。

"main" prio=5 tid=0x00007fc83c000000 nid=0x10164e000 waiting on condition [0x000000010164d000]
        java.lang.Thread.State: WAITING (parking)
              at sun.misc.Unsafe.park(Native Method)
              - parking to wait for  <0x0000000140559fe8> (a java.util.concurrent.locks.
              AbstractQueuedSynchronizer$ConditionObject)
              at java.util.concurrent.locks.LockSupport.park(LockSupport.java:186)
              at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.
              await(AbstractQueuedSynchronizer.java:2043)
              at java.util.concurrent.ArrayBlockingQueue.put(ArrayBlockingQueue.java:324)
              at blockingqueue.ArrayBlockingQueueTest.main(ArrayBlockingQueueTest.java:11)

参考

《java并发编程的艺术》

你可能感兴趣的:(Java多线程(二十六)---java中的阻塞队列)