- Python 用pytorch从头写Transformer源码,一行一解释;机器翻译实例代码;Transformer源码解读与实战
医学小达人
NLPLLMsGPT深度学习人工智能transformerpython机器学习
1.Transformer简介Transformer模型被提出的主要动机是解决序列处理任务的长距离依赖问题。传统的RNN和LSTM虽然能够处理序列任务,但因为它们在处理序列时需要一步步前进,因此其他信息无法立即对其产生影响,当序列变长时,长距离依赖的信息很可能会被丢失。为了解决这个问题,Transformer模型被设计出来,内核思想是利用自注意力机制,这样模型可以直接对输入序列的任意两个位置建立直
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- deepseek和ChatGPT 4o比较
调皮的芋头
chatgpt人工智能
DeepSeek和ChatGPT4o在实现方式、评测效果和使用体验方面的详细比较:实现方式:DeepSeek:推理型大模型DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。后训练+RL/RLHFDeepSeekR1等推理模型是在通用模型的基础上进行“特训”(后训练+SFT/RL/RLHF),使其不仅知道得多还用得好
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- spring cloud和spring boot的区别
zzyh123456
springcloudspringbootspring
SpringCloud和SpringBoot在Java开发领域中都是非常重要的框架,但它们在目标、用途和实现方式上存在明显的区别。以下是对两者区别的详细解析:1.含义与定位SpringBoot:是一个快速开发框架,它简化了Spring应用的初始搭建以及开发过程。旨在通过“习惯优于配置”(ConventionOverConfiguration)的原则,减少开发者在配置上的工作,使得开发者可以更专注于
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
架构默片
JAVA工程师从0开始学AI人工智能javapython
副标题:当严谨的Java遇上"七十二变"的Python函数式编程历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人",带着"记忆传承"的能力自由穿梭于代码之间。这里没有类的枷锁,函数既是武器又是盾牌,高阶函数组合出的"代码万花筒",正是AI数据处理、模型训练的核心密码。本文将用J
- 知识管理成功:关键指标和策略,研究信息的投资回报率
清风徐徐de来
其他
信息过载会影响生产力。没有人工智能的帮助,信息过载会影响生产力。大量的可用信息,知识工作者不仅仅是超负荷工作;他们感到不知所措,他们倾向于浪费时间(和脑细胞)来应付他们被大量的数据抛向他们,挣扎着试图筛选出重要的信息数据来自一堆不重要和重复的数据。这是一场失败的战斗。计算投资回报率(ROI)是一个公认的商业方法ROI是一种用于确定可行性的方法一项新事业或对既定流程的重大改变。从本质上讲,投资回报率
- 腾讯云大模型知识引擎×DeepSeek赋能文旅
繁依Fanyi
python
腾讯云大模型知识引擎×DeepSeek赋能文旅——以合肥文旅为例的技术革新与实践路径一、技术底座:知识引擎与DeepSeek的融合逻辑腾讯云大模型知识引擎与DeepSeek模型的结合,本质上是**“知识库+检索增强生成(RAG)+实时联网能力”**的技术框架升级。通过三步调用API接口,开发者可快速搭建基于DeepSeek的文旅智能应用。其核心优势包括:动态知识更新:突破传统大模型预训练数据的时间
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- huggingface/pytorch-image-models
GarryLau
ML&DLpytorchpythonhuggingface
huggingface/pytorch-image-models1.使用技巧1.1.训练指令单卡:pythontrain.py--pretrained--input-size3224224--mean000--std111--batch-size128--validation-batch-size128--color-jitter-prob0.2--grayscale-prob0.2--gauss
- 360智算中心:万卡GPU集群落地实践
ZVAyIVqt0UFji
360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨360智算中心在万卡GPU集群中的落地实践过程,包括算力基础设施搭建、集群优
- 大规模GPU集群的进阶之路
卢旗
人工智能
大家好,我是卢旗。今天来聊聊GPU。GPU,全称GraphicProcessingUnit,即图形处理器。它的并行处理能力非常强大,能够同时处理多个任务和数据,因此被广泛用于图形渲染、视频处理、深度学习、科学计算等领域。研发团队在负责制定硬件选型策略并设计优化下一代大规模GPU集群的软硬件架构时,我们需要关注GPU技术的最新进展、重点研究问题以及潜在的技术突破。一、GPU在重点研究的问题算力提升与
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 智能算力中心万卡GPU集群架构深度解析
科技互联人生
科技数码人工智能人工智能gpu算力硬件架构
智能算力中心万卡GPU集群架构深度分析 自ChatGPT发布,科技界大模型竞赛如火如荼。数据成新生产要素,算力成新基础能源,大模型成新生产工具,“AI+”转型势不可挡。模型参数量突破万亿,对算力需求升级,超万卡集群成基建竞赛标配。超万卡集群缩短训练时间,加速迭代,助力市场趋势应对。在超万卡集群中,高效稳定地训练大模型面临双重挑战:确保集群算力最大化、网
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 深度揭秘 DeepSeek:2025 最新版,带你从 0 基础到熟练运用
小白教程
AI写作人工智能AIGC
文章目录前言一、deepseek使用技巧大全下载二、使用步骤1.准备篇:快速上手DeepSeekAI平台2.基础对话篇:有效提问与魔法指令3.效率飞跃篇:文件处理与代码生成4.场景实战篇:解决真实世界问题5.高手进化篇:专业生产力工具6.自我学习能力提升7.编程教练篇:代码入门与面试准备8.创作进阶篇:小说创作与视频脚本总结前言这是一篇关于DeepSeekAI平台使用指南的文章,主要介绍了从注册到
- 反超DeepSeek!新版GPT-4o登顶竞技场,奥特曼:还会更好
量子位
关注前沿科技量子位GPT-4o悄悄更新版本,在大模型竞技场超越DeepSeek-R1登上并列第一。除了数学(第6),还在多个单项上拿下第一:创意写作;编程;指令遵循;长文本查询;多轮对话;先直观看下新版GPT-4o的能力如何,还是以之前DeepSeek-R1和o3-mini都挑战过的一个例子来看。Prompt:编写一个Python程序,展示一个球在旋转的六边形内弹跳。球应受到重力和摩擦力的影响,并
- 如何训练LLM“思考”(像o1和DeepSeek-R1一样, 高级推理模型解析
果冻人工智能
AI员工人工智能chatgpt深度学习
2024年9月,OpenAI发布了它的o1模型,该模型基于大规模强化学习训练,赋予了它“高级推理”能力。不幸的是,他们是如何做到这一点的细节从未被公开披露。然而,今天,DeepSeek(一个AI研究实验室)成功复现了这种推理行为,并公开了他们方法的完整技术细节。在这篇文章中,我将讨论这一创新背后的关键思想,并描述它们在底层是如何运作的。一台会思考的笔记本电脑OpenAI的o1模型标志着训练大语言模
- 商汤绝影端到端自动驾驶的迭代优化
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,端到端,迭代优化,深度学习,感知,规划,控制,模型训练,数据增强,模型微调1.背景介绍随着人工智能和计算机视觉技术的飞速发展,自动驾驶汽车从科幻走进了现实。商汤科技推出的绝影端到端自动驾驶系统,就是其中的佼佼者。本文将深入剖析商汤绝影端到端自动驾驶系统的迭代优化过程,帮助读者理解其背后的技术原理和架构设计。2.核心概念与联系商汤绝影端到端自动驾驶系统的核心架构如下:graphLRA[感知
- 《DeepSeek赋能工业互联网:解锁数据深度分析新姿势》
人工智能深度学习
在工业4.0与智能制造的浪潮中,工业互联网成为制造业转型升级的关键支撑。而数据,作为工业互联网的核心资产,其深度分析的质量直接影响着企业的决策准确性、生产效率与竞争力。DeepSeek,作为AI大模型领域的佼佼者,凭借独特的算法优势,为工业互联网的数据深度分析开辟了新路径,带来了前所未有的变革。精准高效的数据采集与预处理在工业场景中,设备种类繁多、数据来源广泛且格式各异。DeepSeek研发的智能
- 控制论的革命者:阿拉德时代智利的技术与政治
shenminyin
控制论社会主义科学技术史赛博历史传记
本书背景位于南美国家智利,版图形如窄条,夹在安第斯山脉与太平洋之间。1970年,智利选民选择了在萨尔瓦多·阿连德·戈森斯(SalvadorGuillermoAllendeGossens)的领导下通过民主道路进行社会主义变革。图书推荐书籍简介本书讲述了20世纪70年代智利阿连德政府时期,一场独特的技术与政治变革实验——Cybersyn项目。这是一个旨在通过控制论和计算机技术,建立覆盖全国的实时经济信
- AI日报 - 2025年02月16日 - 推特版
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|阿里巴巴发布Qwen2.5-VL视觉语言模型,支持多模态交互新模型评测榜性能提升30%▎商业动向|NVIDIABlackwell超级芯片网络研讨会将聚焦生成式AI创新预计推动算力市场增长15%▎政策追踪|印度总统宣布AI国家战略升级,聚焦半导体与算法研发计划未来3年投入50亿美元一、今日热点(HotTopic)1.1阿里巴巴发布Qwen2.5-VL系列视觉语言模
- 2. 从HuggingFace下载千问模型、数据、微调并运行
ApiChain
gpt大模型语言模型人工智能python
视频链接(1)3.从HuggingFace下载千问模型、数据、微调并运行(上)_哔哩哔哩_bilibili在本课程中,我们将带你下载并本地运行一个大模型,进行模型的微调训练等,视频播放量525、弹幕量0、点赞数4、投硬币枚数2、收藏人数11、转发人数2,视频作者jiangliuer3264,作者简介,相关视频:3.从HuggingFace下载千问模型、数据、微调并运行(下),6.租赁GPU服务器并
- JAVA:序列化和反序列化为什么要实现Serializable接口
奋斗的狍子007
JAVAjava开发语言序列化Serializable
一、前言序列化和反序列化是什么1.序列化 序列化是将Java对象转换为字节流的过程。这个字节流包含了对象的类型和状态信息,可以在稍后通过反序列化过程重新构造出原始对象。序列化的核心作用就是对象状态的保存。 在Java中,要实现序列化,类必须实现java.io.Serializable接口。这个接口是一个标记接口,不包含任何方法,但它告诉Java虚拟机(JVM)这个类的对象可以被序列化。序列化场
- DeepSeek的无限可能:探索前沿AI技术在多领域的应用
编码追梦人
AI人工智能人工智能
引言2023年,全球人工智能产业规模突破万亿美元大关,一场以深度学习为核心的技术革命正以前所未有的速度重构人类社会的运行逻辑。在这场变革的浪潮中,中国AI企业深度求索(DeepSeek)以其独特的“问题驱动型”技术路径,悄然构建起覆盖科研、医疗、金融、教育等领域的智能生态系统。第一章技术底座:重构AI核心范式1.1MoE架构的颠覆性创新传统Transformer模型面临参数爆炸与能耗困境,Deep
- 【有啥问啥】DeepSeek 技术原理详解
有啥问啥
大模型深度学习
DeepSeek技术原理详解DeepSeek是一款具有突破性技术的大型语言模型,其背后的技术原理涵盖了多个方面,以下是对其主要技术原理的详细介绍:架构创新多头潜在注意力机制(MLA)传送门链接:DeepSeekV3中的Multi-HeadLatentAttention(MLA):技术解析与应用DeepSeek引入了多头潜在注意力机制(Multi-headLatentAttention,MLA),这
- 解剖DeepSeek四把刀,一场深到源码,大到行业,细到人心盛宴
leluckys
AI大模型AI编程
在拆解DeepSeek源码后,会发现几个颠覆行业认知的真相。这个号称“用十分之一算力吊打GPT-4”的国产大模型,藏着令人拍案叫绝的工程智慧,却也暗藏致命软肋。第一刀:切开开源表象,DeepSeek确实把代码仓库甩上了GitHub,但这套开源策略藏着精妙算计。他们公开的是经过蒸馏的“成品模型”,而非原始训练框架:就像给你组装好的乐高战舰,却藏起了设计图纸。这种半开放式开源既能吸引开发者构建生态,又
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D